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ABSTRACT 

Experiments were conducted to assess the influence of changes "In 

alveolar oxygen tension with and without concomitant changes in arterial 

oxygen tension on respiratory responses to occluding the left and/or 

right airway(s) at specific times during the respiratory cycle. Thirty-

eight anesthetized dogs were intubated with a double-lumen endobronchial 

divider which allowed independent ventilation of the left and right 

lungs. Steady state breathing patterns (volumes, airflows, airway 

pressures and fming of the inspiratory and expiratory phases) and 

reflex responses during bilateral normoxia, hypoxia and hyperoxia (all 

isocapneic) were studied to evaluate the contribution of peripheral 

chemoreception input to control of respiration. A fourth test gas 

experimental condition termed differential ventilation allowed the left 

lung to breathe 100% nitrogen while the right lung breathed 90-100% 

oxygen. This procedure was used to partition the roles of alveolar 

versus arterial Og tension on lung volume reflexes. Data obtained from 

differentially ventilated dogs, when compared with reflexes induced 

during hypoxia and hyperoxia, support the hypothesis that mechanisms 

which 'sense' changes in the concentration of alveolar O2 participate in 

breathing pattern control. Like the C02-pulmonary reflex, oxygen 

chemoreception appears to act by altering pulmonary stretch receptor 

discharge. However, the observation of a significant ventilatory 

response to differentia^ ventilation (normal systemic oxygenation) in 

bilaterally vagotomized dogs further suggests the possibility that 
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intrapu!monary oxygen chemoreception is mediated by extravagal 

mechanisms which could include a humoral component. The contribution 

from vaga"' and extravagal mechanoreceptors in mediating these reflexes 

was evaluated by comparing pre- and post vagotomy responses to 

occlusions set at peak inspiration and end-expiration. Data obtained 

from unilateral airway occlusions revealed that the respiratory response 

to total airway occlusion was not a simple summation of left and right 

lung responses. These results suggest that: 1) pulmonary vagal 

afferents are not strictly ipsilateral, 2) central integration of volume 

feedback is not simply additive and 3) extravagal sensory input provides 

a substantial contribution in control of the breathing pattern. 
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INTRODUCTION 

Numerous investigations concerning the neural, chemical and 

mechanical mechanisms underlying rate and depth conrol of the 

respiratory cycle have been performed. Unfortunately most of these 

studies have been designed to detail only one of these components 

without regarding input from the others. Actually neuronal output of 

the brainstem respiratory center(s) represents central integration of: 

1) vagal and extravagal feedback relaying chemical and mechanical 

information from the periphery, 2) intrinsic spontaneous neuronal 

activity, 3) tonic non-feedback afferent activity, and 4) humoral 

factors. 

Measuring each input-output relationship separately was required in 

order to obtain information as to how the central nervous system 

interprets specific afferent input and how these inputs (mechanical and 

chemical) are interrelated. The present study was designed: 1) to 

evaluate the contribution of the left and right to total lung reflex 

respiratory responses to infinite elastic loading, i.e., airway 

occlusion, 2) to compare the nature of these responses during loading 

and unloading of peripheral chemoreceptors by altering arterial oxygen 

tension, 3) to assess the vagal and extravagal mechanoreceptor 

contributions to these reflexes, and 4) to investigate the possibility 

that alveolar oxygen tension alters these phasic lung-volume related 

pulmonary reflexes. 
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The technical ease of manipulating sensory activity coursing from 

the periphery to the brainstem has led to the use of 'loaded' breathing 

as a tool for studying respiratory pattern regulation. Mechanical loads 

were imposed by occluding one or both airways at end-expiration (EE) or 

end-inspiration (EI) of anesthetized dogs fitted with a cuffed 

endobronchial divider. This enabled assessments of phasic versus tonic 

pulmonary stretch receptor (PSR) afferent effects on respiratory pattern 

control. Similar experiments performed in bilaterally vagotomized dogs 

were used to evaluate the contribution by extravagal mechanical 

afferents on breathing pattern control. Unilateral occlusion in intact 

dogs and respiratory responses to bilateral occlusion in unilaterally 

vagotomized dogs were tested in order to determine the nature of central 

integration, i.e., non-linear verses additive. Unilateral vagotomy was 

also used to ascertain whether or not pulmonary vagal innervation is 

strictly ipsilateral and to evaluate the contribution of left and right 

lung reflex respiratory responses to infinite elastic loads. 

It has been shown that conventional peripheral chemoreceptors exert 

an effect on the breathing pattern which is opposite that resulting from 

stimulation of pulmonary stretch receptors. In addition to peripheral 

and central chemoreceptor involvement in pattern regulation, a CC^-

pulmonary reflex arising from the lungs has been described in dogs 

(Banzett et al., 1978) and repeatedly demonstrated in avian species 

(Fedde and Peterson, 1970). Based on these reports it is tenable that 

changes in alveolar oxygen, independent of alterations in arterial 

oxygen tension, could contribute to rate and depth control of the 
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breathing cycle. Physiological evidence for the existence of 

intrapulmonary oxygen chemoreceptors was first provided by Dawes and 

Comroe (1954) and indeed it has become well-established that hypoxia 

causes pulmonary vasoconstriction by intrapulmonary mechanisms (Daly and 

Hebb, 1966; Laros, 1971). However, the role of intrapulmonary oxygen 

chemoreceptors in regulating the respiratory pattern has not been 

previously addressed. 

Changes in inspired oxygen (both lungs Fj02 = 0.1, 0.2 or 1.0) were 

used in the present study to assess the combined effects of parallel 

changes in alveolar and arterial chemoreceptor inputs on bulbopontine 

respiratory output. To isolate the effects of local alveolar oxygen 

tension without alterating peripheral chemoreceptor input the animals 

were differentially ventilated (left lung with 100% nitrogen and right 

lung with 90 - 100% oxygen). This preparation has lungs which are 

normally innervated and spontaneously breathing. N'onnoxia is 

established during differential ventilation. Therefore, peripheral 

chemoreceptor input should be identical to that which is present during 

room air ventilation. Changes in local oxygen tension of the hypoxic 

and/or hyperoxic lung, if detected by intrapulmonary oxygen 

chemosensitive receptors, could interact with phasic and tonic vagal 

volume feedback mechanisms, extravagal afferents, and/or possibly 

humoral factors such that reflex responses to airway occlusions as well 

as steady state breathing patterns would be altered. 
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LITERATURE REVIEW 

Introduction 

The Hering-Breuer inspiratory-inhibiting and expiratory-

exciting reflexes have been extensively studied during the last 100 

years. These vagally mediated, phasic lung volume reflexes were 

originally hypothesized by Breuer (1868) and Hering (1863) to 

underlie regulation of the respiratory cycle pattern, i.e., rate and 

depth. These reflexes can be elicited: 1) by mechanical loading 

via, e.g., partially or completely obstructing the airways at 

different lung volumes or 2) by artificially inflating the lung with 

a predetermined volume or tracheal pressure at specific times during 

the breathing cycle. 

The reflex respiratory response of decreased frequency and 

increased tidal volume to airway obstruction (resistive loading) as 

well as the increased frequency and reduced tidal volume response to 

external elastic loading are wel 1-documented (Bland et al., 1967; 

Freedman et al., 1972; Freedman, 1974). It is also well-known that 

'threshold' inflations applied during inspiration cause an 'all-or-

none' premature inhibition of inspiration and an apneic period of 

variable duration while inflations applied during expiration result 

in graded lengthening of expiration related to the volume of 

inflation (Clark and von Euler, 1972). However, the responses 

during expiration are less clear cut. Inflations applied during the 

last 20-30% of expiration appear to have no effect and if the 
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inflation is applied very rapidly may actually produce drastic 

shortening of expiration (Knox, 1973). 

The review which follows examines current models of ventilatory 

control and factors which contribute to regulation of the rate and 

depth of breathing. Specific emphasis is placed on the inspiratory-

inhibiting reflex and timing of inspiration and expiration. A 

discussion of afferent (vagal and extravagal), central 

(bulbopontine) and efferent (phrenic) components which have been 

implicated in the reflex arc of respiratory rhythmicity is 

presented. The contribution of a tonic humoral drive to breathe is 

reviewed since phasic lung volume reflexes are superimposed upon 

such a drive even during room air ventilation. Several approaches 

for quantitatively evaluating ventilatory control mechanisms v/il 1 be 

discussed emphasizing the importance of effector mechanisms, i.e., 

mechanical properties of the respiratory apparatus in determining a 

given response. Animal status (conscious versus anesthetized and 

open versus closed-chest) and species specific responses will be 

included since they are imperative considerations in designing 

experiments and interpreting results aimed at evaluating ventilatory 

control mechanisms. 

Proposed Models o^ Ventilatory Control 

It has been proposed that the breathing pattern is adjusted to 

maximize output of the respiratory muscle effort needed to effect 

adequate alveolar ventilation with the minimal amount of work 
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(Rohrer, 1925; Otis et al., 1950) or force (Mead, 1960). In other 

words, the breathing pattern is dependent on respiratory system 

mechanics, i.e., resistance and compliance. 

With regard to the breathing pattern Milic-Emili and Cajani 

(1957) and Hey et al. (1966) have described unique relationships 

between mean ventilation and the mean tidal volume and frequency in 

intact man. However, the mechanisms underlying these relationships 

are not fully understood. 

A widely used working model of ventilatory control proposed by 

von Euler et al. (1970) states that the respiratory cycle 

characteristics are set by a bulbopontine pattern generator 

regulating the duration of inspiration. This central pattern 

generator may interact with vagal mechanisms relaying volume, rate 

of change of tidal volume and transmural pressure information from 

the lungs (Adrian, 1933; Larrabee and Knowlton, 1946; Davies et al., 

1956; Widdicombe, 1964). The magnitude of tidal volume may 

therefore be determined by a combination of the two processes; one 

which sets the rate of volume change (chemical drive) and a second 

which regulates the duration of the volume change. The model of von 

Euler et al. (1970) partially explains the Hey relationships (Hey et 

al., 1966) in terms of neural circuitry and indirectly implies that 

lung mechanics do play an important role in respiratory pattern 

regulation. A more detailed discussion of this model will be 

presented later in this review. 
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Neuronal Networks Underlying Respiratory Pattern Regulation 

Bulbopontine mechanisms 

Studies based on intracellular recordings from different 

neuronal networks within the bulbopontine brainstem areas have 

contributed to current concepts regarding neural control of 

respiration as depicted schematically in Figure 1. Spontaneous 

central inspiratory activity (CIA) which appears to be synchronous 

with phrenic output arises from Type a neurons in the dorsal 

respiratory group of the Nucleus Tractus Solitarius and impinges on 

closely associated Type 3 neurons. These S neurons also receive 

vagal afferent information from pulmonary stretch receptors (PSR) 

which together with CIA activity is relayed to inhibitory off-switch 

(I-OS) neurons-. When the sum of CIA plus vagal volume feed

back coursing to the I-OS reaches some apparent threshold the 

I-OS inhibits inspiration by terminating phrenic motor activity. 

The I-OS may also receive tonic facilitory activity coursing 

from the pontine pneumotactic center located in the Nucleus 

Parabrachialis Medial is and Kolliker-Fuse Nucleus (Bertrand 

et al., 1974). The bulbopontine neuronal pools are 

^The classification used in the figures and text is from 
Baumgarten and Kanzow (1958). Another classification of these cells 
has been presented by von Euler et al. (1973). The I-V cells are 
analogous with the Type 3 neurons which receive both vagal and CIA 
input. The type a cells are referred to as I-S neurons since they 
have spinal axons but do not receive vagal input, von Euler also 
suggests that the I-V efferents represent the I-OS mechanism. In 
other words, the I-V neurons terminate inspiration either by a 
central pattern generator mechanism or by reflex vagal volume 
feedback, or a combination of the two. 
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Figure 1. Schematic representation of neural circuitry postulated to 
be directly involved in respiratory phase-switching. 

Excitatory (+) and inhibitory (-) connections are 
denoted. Central inspiratory activity (CIA) and phrenic 
output drawn as diverging pathways arising from Ra-neurons 
in Nucleus Tractus Solitarius. CIA as well as pulmonary 
stretch receptor (PSR) afferent vagal activity impinges on 
and is integrated by Rs-neurons. Outflow from Rs neurons 
courses to the inhibitory-off switch (I-OS) neurons. The 
I-OS output inhibits Ra-neurons thereby completing a 
classical negative feedback system. Forebrain, 
pneumotactic, hypothalamic, chest wall, and chemoreceptor 
inputs are not shown. 
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functionally, although not anatomically, represented in the 

simplified model diagrammed in Figure 1. Phase switching between 

inspiration and expiration may actually involve at least eight types 

of respiratory neurons which respond specifically to mechanical 

and/or chemical stimuli (Folgering and Smolders, 1979). 

Vagal mechani sms 

It is presently held that slow adapting pulmonary stretch 

receptors are primarily, although not solely, responsible for 

mediating the inflation reflex by responding to changes in 

transpulmonary pressure or volume (Guz and Trenchard, 1971a). There 

is physiological evidence that vagal afferent innervation of a lung 

is exclusively ipsilateral (Klassen et al., 1951; Guz et al., 

1966a). Single fiber nerve recordings have revealed that these 

receptors fire at a rate that is closely proportional to the square 

root of lung volume (Clark and von Euler, 1972). However, pulmonary 

stretch receptor sensitivity can be altered by anesthesia, carbon 

dioxide and temperature which complicates the interpretation of 

their role in reflex responses to mechanical loading. 

Miserocchi and Sant'Ambrogio (1974) categorized pulmonary 

stretch receptors into at least two groups. Type I PSR are located 

mainly in the larger airways. They contribute most of the afferent 

vagal feedback in the normal tidal range with increasing PSR 

discharge corresponding to increasing transpulmonary pressures up to 

about 10-12 cm HgO. Further increases in pressure do not result in 
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increased activity. On the other hand. Type II PSR which are 

located in the small airways show increasing discharge with 

increasing pressure over a very large pressure-volume range with no 

detectable plateau. Thus, as lung volume increases, i.e., 

transpulmonary pressure increases; the contribution by Type II PSR 

impulses to the total PSR afferent activity progressively 

increases. It follows from this that knowledge of the pressure 

generated against an occluded airway is an important consideration 

in describing the strength and mechanisms of phasic lung volume 

reflexes and will be discussed later. 

Clark and von Euler (1972) quantitatively described the 

inspiratory-inhibitory effect of the vagal feedback mechanism by an 

inspiratory volume-time characteristic (Vj-Tj) as shov/n in Figure 2 

and a time dependent relationship of expiratory time (T^) on 

inspiratory time (Tj). Their results were obtained from breath-by-

breath analysis during progressive rebreathing in paralyzed and 

artificially ventilated, anesthetized cats and conscious humans. 

The relationship between tidal volume and inspiratory duration 

represents the threshold sensitivity curve of the respiratory 

centers for the volume-related vagal feedback arc. The Vj-Tj 

relationship is divided into two responses. Range I includes tidal 

volume increases which are not associated with changes in 

inspiratory time and Range II is curvilinear with increases in tidal 

volume being associated with decreases in inspiratory duration. 

Range I, considered the volume-independent portion represents the 
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Figure 2. Relationship between inspired volume and inspiratory 
duration for man and cat. 

Solid lines represent tidal volumes (Yj) and inspiratory 
durations (Tj) obtained during rebreatning experiments. 
Dashed lines are V--Tj extrapolations obtained during 
elastic loading. The crosses (x) indicate position of 
typical tidal volume and inspiratory duration during 
eupneic breathing. It can be seen that man normally 
operates in Range I where Tj is independent of tidal 
volume. Conversely, the eupneic pattern in cats is 
controlled by Range II determinants, i.e., Hering-Breuer 
mechanisms. 
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operational range of the bulbopontine pacemaker mechanism. Range II 

is thought to represent the Hering-Breuer reflex range where changes 

in inspiratory time depend on functional lung volume vagal feedback, 

particularly that arising from slow adapting pulmonary stretch 

receptors. The right end of the threshold curve, when no expansion 

of the lung occurs, is exactly the inspiratory time found in 

vagotomized or paralyzed animals, i.e., that set by the central 

inspiratory activity. This graphical approach for analyzing the 

control of breathing becomes very useful in understanding how 

humoral ventilatory drive and anesthetics interact with mechanical 

factors in pattern regulation. 

The relative importance of vagal volume feedback in respiratory 

pattern regulation does appear to be species specific, although no 

comprehensive investigation has been undertaken. The threshold for 

phasic vagal regulation of the respiratory pattern (presumably due 

to PSR input) is in the eupneic range of ventilation for cats. In 

awake man the vagal effects manifested as changes in Tj only occur 

at tidal volumes of 1.5 to 2.0 times normal. However, PSR activity 

has been shown (Polacheck et al., 1978) to play an important role in 

the control of breathing in some humans anesthetized with enflurane. 

In the absence of vagal feedback, inspiratory time is dictated 

solely by the intrinsic CIA pacemaker activity such that I-OS 

threshold takes longer to be reached and inspiratory time is 

lengthened (Figure 3). It follows that an increase in vagal 

afferent activity (hyperinflation) should terminate inspiration 
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Figure 3. Inspiratory duration depends upon the afferent neural input and threshold of the 
inspiratory off-switch. 

Graph depicts rate of rise of afferent activity (e.g., Rp integration of central 
inspiratory activity plus vagal volume feedback) impinging on inspiratory-off switch 
(I-OS) neurons during hyperinflation (-•-•), during nonnal breathing ( ) and 
following bilateral vagotomy ( ). Inspiratory durations In each situation are 
indicated on the horizontal as Tj-Hyp, Tj-N and Tj-Vgt, respectively. 
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earlier and that sustained vagal input (airway occlusion during 

inspiration) should theoretically delay the onset of another 

breathing effort by keeping input to the I-OS above threshold. 

Such theory has been borne out in studies by D'Angelo and 

Agostoni (1975) in which they observed that the first breathing 

effort against airways occluded at peak inspiration had 

systematically shorter inspiratory times and longer expiratory times 

than efforts against airxays occluded at end-expiration. Prolonged 

Tj of the first effort against occlusion at functional residual 

capacity (PRC) is most likely due to withdrawal of phasic 

inspiratory-inhibitory vagal influence (Widdicombe, 1961a; 

Richardson et al., 1973) resulting from failure of the lungs to 

expand. Airway occlusion at PRC subsequent to vagal cooling or 

vagotomy resulting in an unchanged or even a decreased Tj of the 

first effort in rabbits (Younes et al., 1975) and cats (Corda et 

al., 1965; Bradley, 1972) supports this contention. 

In contrast, Sant'Ambrogio et al. (1972) observed that 

inspiratory time of the first occluded breath was longer when vagal 

conduction was blocked than when intact. This was attributed to the 

presence of high background residual or tonic PSR activity at PRC 

during occlusion of their vagally intact animals. 

It should be evident that a central pattern generator produces 

the motor output of cyclic breathing without receiving any phasic 

sensory input. However, phasic sensory input is normally present 

which overrides the central pattern generator by reflexly 
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terminating phrenic output during eupneic breathing and during 

increased breathing driven by chemical and other stimuli. 

Superficially it seems that the Hering-Breuer reflexes may 

compensate for occluded or overdistended airways. Actually, 

occluded airways result in slow and/or minimal lung filling and 

termination of inspiration by the CIA. In this regard, at least the 

vagal volume related portions of the Hering-Breuer reflex do not 

seem to contribute to determining Tj. 

It has been proposed that mechanisms which determine 

inspiratory time indirectly determine total cycle duration and hence 

respiratory frequency by a time dependent relationship of expiratory 

time on inspiratory time. Clark and von Euler (1972) reported that 

within a single breath the duration of the expiratory phase was 

dependent on the preceding inspiratory phase while the TT and of 

each breath were completely independent of preceding breaths. In 

other words, expiratory duration of one breath had no influence on 

inspiratory time of the next breath. Similar observations have been 

reported by Knox (1973) and D'Angelo and Agostoni (1975). 

Further evidence supporting the idea that both inspiratory and 

expiratory duration are controlled by similar mechanisms was 

reported by Nadel et al. (1973) in which differential cooling of the 

vagus nerves in dogs revealed a direct relationship between 

attenuation of the Hering-Breuer inspiratory-inhibiting reflex and a 

decrease in T-. Further cooling of the vagi to temperatures which 

comple te ly  abo l ished the  Her ing-Breuer  re f lex  was assoc ia ted  w i th  an 
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increase in Tg. Therefore, it was suggested that impulses arising 

from receptors responsible for Hering-Breuer lung volume reflexes 

were also responsible for determining the expiratory period. These 

workers postulated that pulmonary stretch receptor activity arising 

from the lungs during inspiration may cause prolonged 

hyperpolarization of pontine and/or medullary inspiratory units, 

thus requiring a longer period for these cells to return to firing 

threshold, and thereby lengthening expiratory time. 

In contrast to the studies described above, Bartoli et al. 

(1975) were unable to demonstrate consistent changes in Tg 

associated with specific changes in Tj. These conflicting reports 

may be due to species variations since Clark and von Euler (1972) 

used cats while Bartoli's group (1975) studied this relationship in 

anesthetized dogs. Regardless of these differences, the role of 

tonic PSR activity in regulation of Tg has become apparent from 

which a more clear understanding about the different mechanisms 

underlying the control of inspiratory versus expiratory duration has 

developed. 

Central integration of phasic pulmonary stretch receptor 

information as stated before is known to be important in determining 

the rate and depth of breathing. In addition to phasic vagal 

control of respiratory frequency, Breuer (1868) postulated that the 

vagus might exert tonic control (lungs not subject to breathing 

movements) of respiratory frequency. This implies that changes in 

functional residual capacity could influence cycling frequency of 
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the respiratory controller. To confirm an effect of tonic vagal 

discharge on breathing rhythmicity requires the demonstration of 

pulmonary stretch receptor firing at FRC. 

Although Grunstein et al. (1973) have reported that most PSR 

are silent at residual lung volume, the presence,of tonic stretch 

receptor activity at FRC has been observed by others in dogs 

(Miserocchi and Sant'Ambrogio, 1974), cats (Paintal, 1966; 

Widdicombe, 1961b), and in rabbits and cats (Richardson et al., 

1973). It has been suggested that pulmonary stretch receptor 

discharge during expiration prolongs the duration of expiration 

(Hering, 1868; Knox, 1973) by a mechanism analogous to that which 

terminates inspiration-

Increases in end-expiratory lung volume by continuous positive 

pressure ventilation have been shown to produce lengthening of Tg 

and inconsistent changes in Tj with an overall decrease in the TT/TC 

ratio. These observations led Martin et al. (1978) to conclude that 

changes in FRC significantly alter expiratory time which may be 

indicative of tonic vagal control of expiratory duration. 

D'Angel0 and Agostoni (1975) have also observed specific 

alterations in the ventilatory pattern of dogs breathing at volumes 

above and below FRC which they attributed to changes in tonic 

afferent vagal discharge since the effects were abolished by 

vagotomy. Furthermore, persistency of the altered breathing pattern 

during sustained changes in end-expired lung volume suggests that 

tonic PSR activity does not adapt, i.e., resume the firing level 
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present at noma! end-expired lung volume. Such an idea had 

previously been suggested by Grunstein et al. (1973). 

The predominant effect of tonic pulmonary stretch activity on 

expiratory time is inconsistent with the idea of a T^-Tj 

dependency. However, the possibility that changes in functional 

residual capacity may influence breathing must be seriously 

evaluated when studying lung volume reflexes while breathing gas 

mixtures other than room air. Bouverot and Fitzgerald (1969) 

reported that FRC of normal awake dogs increased during hypoxia and 

decreased during hyperoxia, but was unchanged during hypercapnia. 

Recent evidence has been presented (Eldridge, 1973; Tawadrous 

and Eldridge, 1974; Karczewski et al., 1976) for a phenomenon 

referred to as respiratory "habituation" whereby central mechanisms 

maintain breathing at levels different from control after the 

stimulus producing the initial change in breathing is removed. This 

kind of short-term memory is somewhat discordant with the postulate 

that each respiratory cycle is independent of one another. 

Thus, the singular role of 'phasic' PSR activity in regulating 

rate and depth of breathing has been challenged. Evidence has been 

provided implicating irritant receptor activity in this control 

(Fishman et al., 1973; Phillipson et al., 1973; Phillipson, 1974). 

Pulmonary irritant receptors (PIR) whose afferents also course in 

the vagus have been shown to fire with rapidly adapting bursts, but 

only at the end of very large and rapid volume changes (Mills et 

al., 1970; Sel lick and Widdicombe, 1971; Sampson and Vidruk, 1975) 
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such as might occur while breathing against restricted airways. 

Alterations in tidal volume, Tj and Tg during differential cooling 

of the cervical vagi led Nadel et al. (1973) to suggest that slowly 

adapting PSR and PIR actually play opposing roles in the normal 

control of respiration in awake dogs. 

It is also tenable that c-fiber endings with non-myelinated 

vagal afferents are involved in respiratory pattern control. Indeed 

J-receptors (one type of c-fiber ending) are markedly stimulated by 

hyperventilation at elevated intratracheal pressures of 10-20 cm K2O 

in cats (Armstrong and Luck, 1974) and dogs (Coleridge and 

Coleridge, 1977). However, Armstrong and Luck (1974) further 

reported that excitation of J-receptors was only present in cats 

with pneumothorax; increased tidal volume did not excite these nerve 

endings in closed-chested animals. 

Guz and Trenchard (1971b) reported that activity in non

myelinated afferents arising from J-receptors played little or no 

part in the control of normal breathing but that the tachypnea 

associated with certain lung pathologies such as collapsed lung, 

hemorrhage, edema and microemboli was dependent upon the integrity 

of these fibers. Trenchard et al. (1972) extended these findings to 

the rapid shallow breathing associated vrith lung inflammation during 

experimental pneumonia. Such observations may explain some of the 

variation in the Hering-Breuer inspiratory-inhibitory reflex between 

open and closed-chest preparations and in animals with lung fluid 

accumulation and alveolar collapse. 
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As summarized by von Euler and Trippenbach (1976), three main 

factors may be considered to control expiratory duration: 1) the 

initial peak level of inhibitory activity present when inspiration 

is terminated; 2) the amount and timing of inhibitory and/or 

excitatory vagal and extravagal afferent activity that combines with 

the initial inhibitory activity; and 3) the rate of decay of 

inhibition. 

Extravagal mechanisms 

The complex interactions among mechanisms involved in 

inhibition of inspiration are still not completely understood. It 

is known that forebrain control is effected via descending pathways 

which bypass those associated with the automatic metabolic 

bulbopontine mechanisms (Plum, 1970; Newsom amd Plum, 1972). 

Furthermore, since breathing empioys skeletal muscle for its 

performance; it is not surprising that myotatic-like reflexes also 

contribute to rate and depth control. 

Airway occlusion at end-expiration (Remmers, 1970) or during 

inspiration (Sant'Ambrogio and Widdicombe, 1955) is capable of 

inhibiting phrenic discharge in vagotomized preparations. The 

mechanism of this inhibition has not been clearly defined. Corda et 

al. (1965) and Bland et al. (1967) have suggested that this 

inhibition is due to enhanced afferent discharge arising from 

diaphragmatic and intercostal muscle spindles in response to the 

large elastic load and that such termination of inspiration 
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represents autogenic regulation. In contrast. Shannon (1975) 

concluded that the increased respiratory frequency observed during 

external elastic loading in vagotomized cats and dogs was due only 

to increased chemical drive accompanying the hypoventilation. 

Shannon (1975) did demonstrate that extravagal mechanisms involving 

chest wall mechanoreceptors were involved in the reflex increase in 

breathing frequency following chest compression. 

It is known that afferent signals from intercostal muscle 

spindles and tendon organs are altered during mechanical loading. 

Muscle spindles facilitate and tendon organs inhibit intercostal 

alpha-motorneuron activity via short spinal reflexes (Sears, 1964; 

Corda et al., 1965; Nev/som and Sears, 1970). Furthermore, pathways 

from chest wall mechanoreceptors to the central respiratory centers 

have been proposed (Remmers, 1973); Remmers et al., 1973) since 

electrical stimulation of spindle afferents arising from external 

intercostal muscles have been observed to inhibit central 

inspiratory activity. 

More recently, Shannon (1930) reported that proprioceptor 

afferents from all intercostal and abdominal muscles and perhaps 

cutaneous receptors do have an inhibitory effect on dorsal 

respiratory group Type a and Type 3 neurons which drive phrenic 

spinal motorneurons. However, their precise contribution to 

frequency control during spontaneus breathing still remains unclear. 
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Phrenic activity 

Phrenic output pattern is characterized by a rather linearly 

rising discharge with an abrupt cessation followed by a silent 

period. Phrenic patterns may be changed with respect to duration or 

intensity of discharge. In general, chemical drives affect the 

intensity (rate of rise and/or peak amplitude) of the integrated 

phrenic output while mechanical stimuli such as lung volume feedback 

affect the duration of discharge. 

In the course of a normal breath lung volume rises until volume 

related afferent activity, together with CIA, reaches the I-OS 

threshold as described earlier. Inspiration is then terminated and 

expiration ensues. Figure 4 is the same volume threshold curve as 

shown in Figure 2 with the phrenic output of several breaths at 

different levels of inspired carbon dioxide superimposed. It can be 

seen that during a normal breath (p^C02 = 40 mm Hg) the Hering-

Breuer relHex overides timing of the central pattern generator. As 

the rate of rise of inspiratory activity increases during 

hypercapnea (p^C02 = 80 mm Hg) the breath will reach the Hering-

Breuer threshold earlier in inspiration at a greater volume, and 

therefore will terminate that inspiration earlier. At very low 

chemical drives (p^COg = 20 mm Hg) when volume threshold may 

actually not be reached inspiration is terminated by the central 

pattern generator. 
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Figure 4. Phrenic output patterns at three levels of carbon dioxide 
inhalation superimposed on the tidal volume-inspiratory 
duration relationship. 

At high chemical drives (paCCU = 80 mm Hg) with large 
breaths, Tr is terminated by the Hering-Breuer mechanisms 
of Range II while at low chemical drives (paCG^ = 20 mm Hg) 
with shallow breaths, Tj is dictated by CIA Range I 
mechanisms. Adapted from Clark and von Euler (1970). 
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Quantitative Evaluation of Phasic Lung Volume Reflexes 

Strength of the Hering-Breuer reflex (and by extrapolation of 

its contributions during spontaneous breathing) has traditionally 

been assessed by measuring the duration of apnea following a 

'threshold' lung inflation, i.e., time from lung inflation to the 

first inspiratory effort. Under any given experimental condition, a 

longer apnea was interpreted as a stronger reflex and vice versa. 

However, the duration of the Hering-Breuer apnea depends upon many 

factors. These include volume dependent afferent inhibitory input 

from stretch receptors, the humoral ventilatory drive, and the 

functional state of the respiratory center(s). 

Younes et al. (1975) have suggested that it is inappropriate to 

use the duration of apnea as an index of phasic inspiratory-

inhibitory vagal influence on the control of ventilatory parameters 

during spontaneous breathing. These workers provided an alternate 

approach for assessing phasic vagal influence on tidal volume. Their 

method involved comparing the maximum tracheal pressure during the 

first inspiratory effort against airways occluded at PRC with the 

pressure of this effort which is present at the inspiratory time of 

the preceding control breath. 

Although the method of Younes et al. (1975) is appropriate for 

anesthetized subjects; it is probably not a reliable indicator in 

awake subjects since perception of an added load may influence the 

response and hence the development of maximal tracheal pressure 

(Margaria et al., 1973; Freedman, 1974). Hhitelaw and coworkers 
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(1975) subsequently reported that load detection is not apparent 

during the first 100 msec of an inspiratory effort against the 

restricted airways. Based on this finding, these workers have 

suggested using the value of tracheal pressure developed against an 

occluded airway which is present just before conscious detection 

occurs. The value which is defined as the airway pressure at 

100 msec after the start of a loaded inspiration is thought to 

reflect the force of approximately isometric contraction of 

inspiratory muscles and to represent neural output to these muscles 

in awake subjects. As such, it eliminates increased neuronal 

discharge from intercostals, diaphragm and larynx (autogenic 

reflexes) or from higher centers (conscious voluntary efforts) from 

biasing the measured Hering-Breuer reflex strength. 

For to be a valid index of respiratory center output 

during unobstructed breathing, it must be verified that 1) occlusion 

itself does not produce a change in neuronal discharge to 

respiratory muscles and 2) bears a constant relation to 

neuronal discharge (Whitelaw et al., 1975). However, the 

presumption of a greater occlusion pressure (Pg.i) reflecting a 

greater neural output to the inspiratory muscles is not justified if 

end-tidal lung volume changes. This argument is especially valid 

when phasic lung volume reflexes are studied while breathing gas 

mixtures other than room air since changes in inspired oxygen can 

result in alterations of FRC. 
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Although tracheal pressure and timing measurements have 

inherent limitations they are better indices of respiratory center 

output than simple measurements of changes in minute volume or 

inspiratory muscle activity {diaphragm or intercostal 

electromyograms). At least tracheal pressure measurements during 

occlusion breathing are nearly independent of lung mechanics, 

particularly compliance and resistance which are known to alter the 

respiratory pattern. When either compliance or lung resistance is 

abnormal, i.e., the mechanical effector mechanisms are impaired; 

both the afferent and efferent neural limbs of the Hering-Breuer 

reflex may still remain completely normal. The error in correctly 

quantifying mechanical lung reflexes by using minute volume indices 

is most apparent in reports which suggest that carbon dioxide 

attenuates the respiratory response to mechanical loading. 

Actually, hypercapnea induces increased airway resistance and 

decreased lung elasticity such that the neurally driven ventilatory 

drive is just prevented from being fully expressed. 

The Humoral Ventilatory Drive 

The interaction of peripheral and central chemoreceptor 

activation with phasic lung volume reflexes and the eupneic 

breathing pattern has also received attention. Adrian (1933) was 

the first to introduce this concept reporting that neither CO2 or 

low O2 alter the discharge of pulmonary stretch receptors. More 

recently, Miserocchi (1976) reported no difference in the peak 
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firing frequency of PSR in cats during hypoxia as compared to 

normoxia at constant levels of CO2 (paC02 = 27 - 30 mm Hg). From 

these two reports it might be surmised that increasing the humoral 

ventilatory drive by hypoxia or hypercapnia does not directly change 

the vagal discharge for a given lung volume and hence does not alter 

the strength of the Kering-Breuer apnea by this mechanism. 

However, Clark and von Euler (1972) proposed an indirect 

mechanism such that the increased depth of breathing resulting from 

hypercapneic stimulation of peripheral and central chemoreceptors 

increases the amount of pulmonary stretch receptor discharge; thus 

terminating inspiration earlier with each deeper breath. 

Shortly thereafter, Mustafa and Purves (1972) reported that 

inhalation of 3 - 9% GOg in oxygen with subsequent elevation of 

arterial pCOg reduced end-expiratory as well as the average and peak 

frequency during inspiration of PSR firing in rabbits ventilated at 

constant volume; a response similar to that found for avian 

intrapulmonary receptors (Fedde and Peterson, 1970). Similarly, PSR 

discharge is inhibited in dogs breathing 8% of COg (intact pulmonary 

circulation); the hypercapnia being more effective in reducing tonic 

PSR activity during expiration than in reducing phasic inspiratory 

PSR activity (Sant' Ambrogio et al., 1974). This latter report is 

consistent with the observations that hypercapneic induced tachypnea 

is brought about primarily by changes in expiratory duration. 

However, discordant reports that inspiratory activity is much less, 

if at all, dependent upon COg and is evoked by inflation of the 
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lungs only (Woldring, 1965) leaves the impression that only the 

expiratory part of the respiratory cycle is COg sensitive. 

Bartoli et al. (1974) have actually detected a vagal reflex 

originating from the lungs which produces tachypnea (predominantly 

due to a decrease in T^) during CO2 inhalation in dogs on 

cardiopulmonary bypass, i.e., arterial PO2 and PCO2 held constant. 

Mechanisms of this reflex have been studied in more detail by 

Banzett et al. (1978) using a differentially ventilated dog 

preparation. These workers observed an increase in phrenic activity 

when carbon dioxide was allowed to accumulate in a vascularly 

isolated lung excluded from ventilation. Restoration of normal 

ventilation to this test lung with subsequent reduction in alveolar 

CO2 resulted in a significant attenuation of phrenic activity. Both 

responses were abolished by vagotomy. From these results Banzett 

and coworkers (1978) proposed that the physiological significance of 

a pulmonary-C02 ventilatory reflex may be to provide an inhibitory 

feedback to the respiratory center when lung PCO2 falls below normal 

levels, rather than to drive ventilation when mixed venous carbon 

dioxide levels rise. Bradley et al. (1975) using cardiopulmonary 

bypass in dogs have verified that hypercapnic inhibition of PSR 

activity is due to changes in alveolar CO2 with changes in arterial 

CO2 (at constant alveolar CO2) producing insignificant and 

inconsistent alterations in PSR activity. 
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Studies concerned with the COg-pulmonary reflex have all been 

done under hyperoxic conditions. No recent information about the 

effects of oxygen on specific PSR firing patterns and coincident 

phase relationships within the respiratory cycle is available. 

The integrity of vagus nerves has long been considered a 

prerequisite for the increase in respiratory frequency which 

normally occurs both in man and animals in response to increased 

chemical drive of respiration (Scott, 1908; Cohen, 1964; Nesland et 

al., 1966; Guz et al., 1956b; Tang, 1967; Richardson and Widdicombe, 

1969; Phillipson et al., 1970). However, Shannon (1975) has 

observed an increased frequency response during CO2 breathing in 

some vagotomized cats and all vagotomized dogs indicating 

involvement of extravagal mechanisms as well. Similarly, vagal 

block does not prevent the increased ventilatory response to 

'transient' hypercapnia in anesthetized rabbits (Delpierre et al., 

1979) or cats (Bradley, 1976). 

Vagal block does reduce the long term minute volume response to 

both hypercapnia and hypoxemia which Mills and Sampson (1969) have 

attributed to the fact that cervical vagal block interrupts efferent 

sympathetic impulses to the carotid bodies. This prevents 

vasoconstriction and reduction in blood flow to the chemoreceptor 

elements which sympathetic discharge normally causes. 

Since norepinephrine and epinephrine are known to inhibit 

central respiratory output, attenuation of hypercapneic hyperpnea 

could also involve the increased plasma catecholamine levels 
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associated with an arterial PCO2 exceeding 50 mm Hg (Sechzer et al., 

1960; Dejours, 1964). 

Reduced ventilatory response to absolute levels of CO2 and the 

narrowing range of COg responsiveness after vagotomy are primarily 

due to the inability to increase frequency. This has been 

demonstrated in man (Guz et al., 1965b), cats (von Euler et al., 

1970; Clark and von Euler, 1972; Grunstein et al., 1973), dogs 

(Phillipson et al., 1970) and rabbits (Richardson and Widdicombe, 

1969; Weimer and Kiwull, 1972). In fact, the increase in tidal 

volume for a given increase in alveolar PCO2 has been reported to be 

larger after vagotomy such that in the lower pACC^ ranges the tidal 

volume changes effectively compensate for the lack of frequency 

response thus sustaining normal minute volume (von Euler et al., 

1970). 

It is important to differentiate central from peripheral 

chemoreceptor activation in affecting the depth and timing of the 

respiratory cycle. The responses of central respiratory neurons to 

hypercapnia and/or hypoxia have been described (Nesland et al., 

1966; Cohen, 1968; St. John and Wang, 1977; Folgering and Smolders, 

1979). Central chemoreception has been reported to alter the 

bulbopontine rhythm thereby influencing the output to the 

respiratory muscles and to increase the sensitivity of the 

respiratory centers to phasic vagal input, i.e., displace the Vy-Tj 

relationship to the left (Miserocchi and Milic-Emili, 1975; 

Miserocchi, 1976). However, conflicting evidence has been presented 
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(Clark and von Euler, 1972; Bradley et al., 1974) that the same Vj-

Tj curve describes the termination of breaths taken under a variety 

of carbon dioxide concentrations implying that CO2 has no effect on 

the central threshold. 

Peripheral chemoreceptors only influence the output of the 

respiratory centers (Miserocchi, 1976) such that an increase in 

peripheral chemoreceptor afferent activity will generate a greater 

inspiratory flow (more forceful breath). This implies that the 

threshold for inhibition of inspiratory activity is reached sooner 

at larger tidal volume according to the slope of the Vj-Tj 

relationship (cf. Figure 4). 

Afferent activity arising from carotid chemoreceptors and 

pulmonary stretch receptors has opposing central effects on 

breathing; one excitatory and the other inhibitory. Hypercapnia 

causes an increase in carotid chemoreceptor activity but a decrease 

in pulmonary stretch receptor activity. Although the activity from 

these two receptor groups produces opposite effects on breathing, 

the receptors function in a complementary manner in producing the 

ventilatory response to carbon dioxide. Bouverot et al. (1970) have 

reported that increased alveolar CO2 provokes a humoral ventilatory 

drive in awake dogs which involves both a chemorefiex and central 

mechanisms. They felt such an idea could explain why hypercapneic 

dogs (whether intact or chemodenervated) had shorter inspiratory-

inhibitory reflex apneas than normocapneic animals. The interaction 

of chemical and mechanical loading is most apparent in dogs which 
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have carotid sinus nerve sections (chronic denervation of peripheral 

chemoreceptors) in which the apnea elicited by clamping the airway 

at a given lung volume was more prolonged than the apnea of an 

intact dog (Bouverot and Fitzgerald, 1969). 

Blood and alveolar gases may also affect phasic lung volume 

reflexes by altering airway smooth muscle tone and thereby changing 

either phasic and/or tonic PSR activity. Both hypocapnia (Ingram, 

1975; Banzett et al., 1973) and hypercapnia (Green and Widdicombe, 

1966) have been reported to cause airway constriction in dogs. 

Green and Widdicombe (1966) reported that hypercapneic 

bronchoconstriction was mediated via the vagus while Banzett et al. 

(1978) reported that increases in tracheal pressure during 

hypocapnia were not affected by vagotomy. These conflicting reports 

may be due to differences in resting tension of the bronchial smooth 

muscle- A direct dilator action of CO2 on bronchial smooth muscle 

is apparent only when the tissue has been previously constricted by 

drugs (Missel 1 , 1950; Sterling et al., 1972) or following pulmonary 

artery occlusion (Severinghaus et al., 1961; Tisi et al., 1970). 

Vagal effects of CO2 on airway smooth muscle may be related to the 

actions of alveolar gas on pulmonary stretch receptor activity since 

PSR stimulation produces reflex relaxation of bronchial smooth 

muscle (Widdicombe and Madel, 1963). 
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As for the effects of oxygen on airway smooth muscle, Nadel and 

Widdicombe (1963) observed hypoxic induced bronchoconstriction. 

Acute exposure to low inspired oxygen concentrations also result in 

small, but significant, decreases in specific airway conductance 

with increases in both airway resistance and thoracic gas volume 

(Green and Widdicombe, 1966; Bouverot and Fitzgerald, 1969). 

Similar changes have been reported in humans (Sterling, 1963). 

However, in vitro experiments have shown hypoxia to be a 

bronchodilator (Nissell, 1950) and to cause loss of active tension 

developed by bronchial smooth muscle (Stephens et al., 1963). 

Changes in inspired oxygen and carbon dioxide can also affect 

phasic lung volume reflexes by altering afferent activity arising 

from the muscles of respiration. Inspiratory muscle spindles and 

fusimotor fibers show an increase in activity in response to hypoxia 

and hypercapnia even in the absence of any mechanical loading 

(Newsom, 1970). This muscle activity was implicated earlier by 

Campbell et al. (1961, 1962, 1964) in the respiratory responses to 

mechanical loading. 

J-receptors may be partially involved in the Hering-Breuer 

inspiratory inhibitory reflex. Therefore, it is important to 

understand the effects of changes in blood or alveolar gas 

concentrations on these receptors which, being anatomically situated 

in the interstitial spaces of the alveolo-capillary wall, are 

accessible to both blood and gas phases. Paintal (1955) originally 

reported that hypoxia does not affect the J-receptors. However, 
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Ahluwalia (1979) has recently shown that hypoxia (alveolar p02 47-67 

mm Hg) abolishes the visceromatic J-reflex; an effect most probably 

due to some pre-synaptic inhibition at higher levels. Such an idea 

is compatible with the report by Eccles et al. (1966) that 

motorneurones themselves are remarkably insensitive to hypoxia. It 

remains to be determined if the inhibition actually arises from the 

lungs rather than at the level of the central nervous system. 

Effects of Anesthesia on Respiratory Control 

A most important consideration in evaluating phasic lung volume 

reflexes is the depth and type of anesthesia used during the 

experiments. Moyer and Beecher (1942b) reported that anesthetics 

generally enhance the lung inflation apnea. Similarly, Made! et al. 

(1973) have shown that general anesthesia with sodium pentobarbitone 

or halothane progressively increased the duration of Hering-Breuer 

apnea elicited by inflating to airway pressures from 5-25 cm H2O 

during inspiration compared to the response of the same dogs in the 

conscious state. However, more recently halothane has been shown to 

actually abolish pulmonary stretch receptor activity and hence the 

reflex events associated with PSR stimulation, namely inflation 

apnea. Similarly, Bouverot and Fitzgerald (1969) have observed time 

related differences in the Hering-Breuer apnea during pentobarbital 

anesthesia with the reflex being maximal at 1-2 hours after 

induction, less intense at 30 minutes and even less intense at 3 

hours post-induction. 
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The effects of specific anesthetic agents on the relationship 

between tidal volume and respiratory duration may underly these 

observations. Clark and von Euler (1972) reported that Range I of 

the Vj-Tj relationship was absent in vagally intact cats rebreathing 

air under pentobarbital anesthesia. However, in similar experiments 

under urethane anesthesia these cats did exhibit both Range I and 

Range II characteristics of the Vy-Tj relationship (cf. Figure 

2).l Grunstein et al. (1973) also reported the absence of Range I 

in cats anesthetized with either sodium pentobarbital or Dial-

urethane. Grunstein et al. (1973) further reported that the type of 

anesthesia used did not affect the slope or intercept of the 

frequency versus inspiratory time relationship. Thus, for a given 

breath the relationship between Tj and Tg was maintained in the 

presence of changes in the inspiratory-inhibitory effect of vagal 

feedback during anesthesia with different agents. 

It is well-known that sodium pentobarbital depresses the 

central excitory state (Moyer and Beecher, 1942a; Florez and 

Borison, 1959) which alone could account for changes in phasic lung 

volume reflexes in these preparations. Anesthesia has been shown to 

abolish respiratory activity in the pontine reticular formation and 

to greatly reduce bulbar unit activity associated with respiration 

(Bertrand et al., 1976; Hugelin, 1977). It has been suggested 

iRange I of the Vj-Tj relationship includes the volume independent 
bulbopontine CIA determination of Tj while Range II represents the 
Hering-Breuer vagal volume related mechanisms controlling 
respiratory duration. 
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(Blanchi and Baril Tot, 1978) that the depressant effects of 

anesthesia on bulbopontine respiratory units results in a decreased 

rate of rise of central inspiratory activity without altering the 

inspiratory off-switch threshold. Such a mechanism could explain 

the slow shallow breathing pattern associated with deep 

anesthesia. Redgate (1963) has further shown that barbiturates 

selectively depress the hypothalamic areas to a greater degree than 

medullary centers, thereby impeding tonic nerve impulses descending 

from the hypothalamus to the medullary reticular formation which 

normally facilitate inspiration in cats- They proposed that 

reduction of the forebrain respiratory facilitating information 

allows the inhibitory vagal afferents to exert a larger effect such 

that the Hering-Breuer apnea is more pronounced during barbiturate 

anesthesia. 

Anesthetics may also interfere with phasic lung volume reflexes 

by altering activity of the respiratory musculature. Tusiewicz et 

al. (1977) have shown that phasic intercostal muscle activity is 

more sensitive to anesthetic depression than diaphragmatic activity. 

Since chemical and mechanical reflexes may interact it is 

important to consider the effects of anesthetic agents on 

chemoreflexes. Barbiturates and narcotics diminish the centrally 

mediated CO2 response (Moyer and Beecher, 1942a). On the other 

hand, Comroe (1964) has proposed that peripheral chemoreceptor 

reflexes resist the depressive effects of anesthesia. Narcotics and 

barbiturates preserve and sometimes enhance peripherally mediated 
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responses to hypoxia (Moyer and Beecher, 1942a), hyperoxia (Marshall 

and Rosenfeld, 1936) and sodium cyanide (Dripps and Dumke, 1943). 

In direct contrast, parallel reduction in the ventilatory response 

to hypoxia and hypercapnia has bec-;i reported in humans anesthetized 

with thiopental (Knill et al., 1978) and morphine (Weil et al., 

1975). Halothane has been shown to abolish the hypoxic response 

leaving the ventilation-COg relationship essentially unchanged 

(Knill et al., 1978). 

Effects of Cervical Vagotomy on Respiratory Control 

Although the vagus nerves are the afferent pathway for the 

Hering-Breuer inspiratory-inhibitory and several other respiratory 

reflexes that affect the rate and depth of breathing; it is not 

known what influences specific reflexes exert on the control of 

normal breathing. Interruption of vagal conduction in experimental 

animals whether by application of local anesthetics (Phillipson et 

al., 1970; Nadel et al., 1973), reversible cooling (Fishman et al., 

1973; Nadel et al., 1973) or severing of the nerves results in slow 

deep breathing and abolishes the Hering-Breuer lung volume 

reflexes. Both these observations are cited as evidence for the 

tonic influence of these reflexes in quiet breathing. 

Along these lines it is interesting that the ability of humans 

to detect added elastic loads and the sensation associated with 

externally loaded breathing is not affected by lidocaine vagal block 

(Guz et al., 1966c). These results support the idea that humans are 
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functionally vagotomized with respect to the respiratory system 

showing negligible reliance on Hering-Breuer reflex control of 

respiration during eupneic breathing. 

However, vagotomy has other important consequences which must 

be considered in conjunction with the respiratory reflex arc during 

normal or altered chemical drive. Vagal block in cats and dogs 

results in larger tidal volumes, higher levels of peak phrenic 

output and the associated increases in diaphragmatic activity which 

are achieved as a consequence of prolonged inspiratory time; the 

rate of increase in inspiratory activity of each breath remaining 

unchanged (Head, 1389; Hammouda and Wilson, 1932; Larrabee and 

Knowlton, 1946; von Euler et al., 1970; Bartoli et al., 1973; 

Bartoli et al., 1975; Feldman and Gautier, 1975). Irregularities in 

the instantaneous phrenic motorneuronal output expressed 

mechanically as deflections in the inspiratory flow trace are also 

typical of the vagotomized state (Bartoli et al., 1975). 

Although tidal volume increases and respiratory frequency 

decreases, bilateral vagal block has no significant effect on 

arterial COj tension or on the apneic threshold CO2 tension in 

conscious dogs (Phillipson et al., 1970; Nadel et al., 1973) 

suggesting that the vagi do not normally inhibit the respiratory 

center. These findings differ from results in anesthetized dogs 

(Lim et al., 1958; Honda et al., 1962) in which vagotomy produced a 

decrease in arterial CO2 and in the apneic threshold COg tension. 



www.manaraa.com

45 

The effect of vagotomy on expiratory time is variable (Bartoli 

et al., 1973). According to the T^-Tj relationship proposed by von 

Euler et al. (1970) one would predict the vagotomized breathing 

pattern to have a characteristic lengthening of Tg which is 

proportional to the lengthening of inspiratory time. However, 

D'Angel0 and Agostoni (1975) have reported that expiratory time 

increases from 3.19 sec before to 4.94 sec after bilateral vagotomy 

in dogs. This change in T^ was less than the lengthening of Tj 

which they observed (1.27 sec before to 4.11 sec after vagotomy). 

Expiratory time has also been observed to decrease following 

vagotomy such that frequency actually increased in 71% of the dogs 

studied by Bartoli et al. (1973). 
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METHODS 

The experimental protocol of this investigation was directed at 

obtaining a preparation for comparing the influence of intra- and 

extrapulmonary chemoreflexes on: 1) steady state spontaneous 

breathing patterns and 2) respiratory responses to unilateral and 

bilateral airway occlusions set at functional residual capacity and 

at several volumes above the end-expiratory level. 

Surgical Procedures 

Experiments were performed on 38 adult dogs (20.9 to 45.4 kg) 

anesthetized with thiopental (22 mg/kg) followed by a mixture of 

alpha-chloral ose (38 mg/kg) and urethane (300 mg/kg). Alpha-

chloralose (2.5%) and urethane (20%) were solubilized in saline 

(52°C) and infused at a rate of 1.5 ml/kg.min. Supplementary doses 

of alpha-chloralose (10 mg/kg-hr) were administered as required. 

All studies were performed with the animal in dorsal recumbency. 

Rectal temperature was kept between 37-39®C with a thermal pad under 

the dog and external radiant heat. 

Initial surgical procedures included catheterization of a 

carotid artery and jugular vein and isolation of both cervical vagi 

for later sectioning. A Kottmeier canine endobronchial tube (Rusch 

Inc.) was inserted through a tracheostomy just below the cricoid 
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cartilage and positioned at the carina. A sal ine-filled cannula was 

placed in the lower third of the esophagus for estimating pleural 

pressure (?£$) as detected by a Bell and Howell transducer. 

Cardiopulmonary Measurements 

The experimental situation is illustrated in Figure 5. 

Inspiratory and expiratory airflow rates (Fj and Fg, respectively) 

were determined by Fleisch#0 pneumotachometers (warmed to 37®C) 

connected to each side of the tracheal divider. Airflow signals 

were electronically integrated to give a continuous record of tidal 

volume (Vj). Pneumotachometers were calibrated with room air before 

every experiment over a range of constant airflows (1-45 L/min). 

Volume integration was calibrated with a 500 ml glass syringe. The 

relationship between differential pressure (Statham PM5E) recorded 

from the pneumotachometers and flow was linear over the range of 5-

30 cm H2O above atmospheric pressure. Previous calibration of the 

pneumotachometers with 100% nitrogen, 100% oxygen and 10% oxygen 

(balance nitrogen) revealed no measurable differences compared to 

the room air calibrations. Airway pressures (P^y) were measured 

through side ports of the tracheal divider connected by means of 

polyethylene tubing to Statham (PM5E) differential pressure 

transducers. Airway pressures were referenced to atmospheric 

pressure. The pneumotachometers were in series with manually 

controlled occluding valves. These occluding valves were connected 

either to spirometers (Godart model 16000 Expirograph during 
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Figure 5. Schematic of apparatus used for measuring cardiopulmonary 
parameters in anesthetized dogs. 

Note that each lumen of the endobronchial divider opens 
individually into one of the mainstem bronchi. System 
resistance is 0.4 cm K^O/L's at 10 L/min airflow and 1.2 cm 
HgO/L's at an airflow of 40 L/min. Dead space of the 
endobronchial divider and external apparatus to each lung 
was approximately 40 ml. 
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measurements of oxygen consumption (VO2) or through unidirectional 

valves (Rudolph #1400) to bags filled with the desired gas. The 

concentration of carbon dioxide in airway gas (ET-pCO^) was 

monitored by an infrared CO2 analyzer (Beckman LB-1 Medical Gas 

Analyzer) sampling at a rate of 500 ml/min from either the left or 

right port of the tracheal divider. Dead spaces was adjusted to 

maintain identical ET-pCOg for each lung. 

Airflows, tidal volumes, airway pressures, and pulmonary 

arterial blood pressure were continually monitored in every 

experiment on an 8-channel pen recorder (Beckman R-611). Permanent 

records of esophageal pressure, arterial blood pressure and end-

tidal PCO2 were obtained intermittently. 

End-tidal gas from each lung as well as arterial and mixed 

venous blood samples were collected from the same cannulas used for 

pressure recordings. Subsequent measurements of pO^, pCOg and pH 

were made with a pH/Blood Gas Analyzer (Model 513, Instrumentation 

Laboratory). Oxygen consumption of each lung was calculated from 

the spirometric recording at the time of blood and airway gas 

s amp! ing. 

Airway Occlusion Procedures 

It was of major importance to effectively separate the right 

and left lungs from each other and to insure that they remained 

separated during occlusion maneuvers. Three tests were used to 

verify that the two sides were completely separated. 
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The f irst of these is a modification of the procedure used by 

Seed and Sykes (1972). It involves connecting one side of the 

tracheal divider to an underwater seal of 1 cm H2O pressure while 

the contralateral side is left open to room air. The submerged side 

is occluded for 5 consecutive inspiratory efforts. Absence of 

bubbling through the water seal during the expiratory phase of the 

third, fourth, and fifth breath indicates separation. 

The second test was used for detecting leaks around the cuff 

and to insure that the external system of tubes and valves to each 

lung was completely airtight. Sustained positive pressure plateaus 

in the airways during the apneic period of bilateral occlusion at 

peak inspiration verified that the system was airtight (Figure 6). 

A typical example of recordings which indicate the presence of air 

leaking around the endobronchial divider cuff during the apneic 

period is shown in Figure 7. 

The third test used to insure that the left and right lungs 

were separated involved monitoring airway CO2 during unilateral 

occlusions at peak inspiration (Figure 8). Adequate separation was 

verified if: a) COg progressively accumulated in the lung which was 

occluded, i.e., PCO2 at peak inspiration was greater than zero, and 

b) the PCO2 gradient from peak inspiration to end-expiration was 

less than 5 mm Hg. 

A negative result for any of these tests was interpreted to 

mean less than adequate separation of the two lungs; the endo

bronchial divider was repositioned and the tests repeated. Once the 
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Figure 6. Test used to monitor external apparatus air leaks. 

Records show airflow, tidal volume and airway pressure (P^u) of the left and right 
lung as well as pulmonary arterial blood pressure (PAP) and esophageal pressure 
(PES)* Inspiration is indicated by a downward deflection in each of the respiratory 
parameter recordings. Four normal breaths appear at the left. Both airways are 
occluded at peak inspiration of the fifth breath (arrow) and remain occluded for 
three breaths (heavy black line). Note the sustained positive pressure plateaus (*) 
In both airways during the apneic and/or expiratory periods of occluded breathing. 
These plateaus indicate that the two lungs are completely separated and free of 
external apparatus air leaks. 
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Figure 7. Record showing decay of pressure in both airways during 
bilateral occlusion set at peak inspiration. 

Airflow, tidal volume and airway pressure (P^w) of the left 
and right lung as well as aortic blood pressure (AoP) and 
pulmonary arterial blood pressure (PAP) are shown. Both 
airways are occluded at peak inspiration (downward 
deflection) of the fourth breath as indicated by the 
vertical arrow on the time trace. Absence of pressure 
plateaus (curved arrows) during subsequent expirations 
against the occlusion is indicative of external apparatus 
air leaks. 
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Figure 8. Test used to insure complete separation of the left and 
right airways. 

Traces show airflow, tidal volume and airway pressure (P^%) 
of the left and right lung as well as right lung carbon 
dioxide (ET-PCO2) and right ventricular pressure (RVP). 
The right lung is occluded at peak inspiration (downward 
deflection) of the second breath and remains occluded for 4 
subsequent efforts. The period of occlusion is indicated 
with the time trace at the bottom of the records. Note the 
accumulation of alveolar COg and diminuation of tidal PCO2 
fluctuations during subsequent efforts against the occluded 
airway. 
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endobronchial divider was properly positioned, it was secured in 

place by two tight ligatures above and below the tracheostomy. 

A pillow was placed under the dog's head and the 

pneumotachometers were set slightly above the plane of the dog's 

head to aid in dorsally directing the distal end of the tracheal 

divider. These procedures prevented the endobronchial divider from 

inadvertently compressing the right pulmonary artery which lies 

directly over the carinal bifurcation. 

Unilateral and bilateral airway occlusions were set at end-

inspiratory and end-expiratory lung volume during spontaneous 

breathing. Occlusions were applied randomly and always maintained 

for three breaths. Each maneuver was repeated at least twice. The 

animal was allowed to breath normally for 2 minutes between 

occlusions. 

All maneuvers were analyzed with respect to three breaths: 1) 

the control breath immediately preceding occlusion; 2) the breath 

during which the occlusion was actually set, i.e., the occluded 

breath; and 3) the first effort breath following occlusion (Figure 

9). Measurements of inspiratory duration and expiratory duration 

for all control breaths (Tj and T^ respectively) and for the first 

effort breaths (Tjg and Tgg respectively) during unilateral airway 
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Figure 9. Breath-by-breath recording used for analyzing reflex respiratory responses to airway 
occlusions. 

Airflow, tidal volume and airway pressure (P.^) of the left and right lung are 
shown. Unless indicated otherwise, the upper six traces will be recordings of these 
same parameters in subsequent figures. The esophageal pressure (Ppg), right 
ventricular pressure (RVP) and time scale appear in the lower three traces of this 
figure. From left to right: control, occluded and first effort breaths. Onset and 
duration of occlusion are indicated with an arrow and heavy black line on the time 
trace. Inspiratory and expiratory periods of the control breath (T,, Tc) and first 
effort breath (Tjo. T^Q) are designated. The expiratory period of the occluded 
breath is referred to as the apneic period and is abbreviated T*. Refer to 
ABBREVIATIONS for more complete definitions of specific time intervals. 
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occlusions were taken from the flow or volume tracings.^ However, 

since no flow or volume signals were generated during bilateral 

airway occlusions the first effort duration measurements were taken 

front the tracheal pressure tracings during these maneuvers. 

The effect on breathing pattern of eliminating (partially or 

completely) phasic pulmonary stretch receptor activity was examined 

by occluding one or both airways at end-expiration (EE maneuvers). 

Except for slight expansion due to decompression of intrathoracic 

gas, there was effectively no volume change during subsequent 

inspirations in the lung(s) occluded at PRC. 

As suggested by Grunstein et al. (1973), bulbopontine 

respiratory activity (phase-switching or rhythm) was described by 

the relationship between inspiratory and expiratory durations of 

first effort breaths during bilateral airway occlusion at end-

expiratory lung volume. Phasic vagal activity is negligible during 

these maneuvers. However, tonic PSR vagal activity is still present 

during EE maneuvers in vagally intact dogs and is therefore included 

in these descriptions of bulbopontine rhythm. The tonic PSR 

component was evaluated by: a) comparing reflex responses to BLO-EE 

maneuvers in vagally intact dogs with the timing characteristics of 

unoccluded breathing in bilaterally vagotomized dogs, and b) 

^Duration of the inspiratory, expiratory and total respiratory cycle 
periods are expressed in units of time. As such, they have been 
abbreviated as Tj, Tg and Tygy, respectively. These specific periods 
will be referred to in the text as inspiratory, expiratory and total 
cycle time. As such, the inverse of the total cycle duration or period 
(1/TTOT) is properly defined as respiratory frequency. 
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comparing phase-switching parameters (Tj, Tg, and TyQ-p) of 

first effort breaths against end-expiratory occlusions with those 

during end-inspiratory occlusions. Occlusions at end-inspiration 

(EI maneuvers) were used to selectively increase the tonic PSR vagal 

component while simultaneously eliminating phasic PSR activity. 

Similar comparisons were made between EE and EI maneuvers for 

the rate of change of airway pressure (I-P^^^/Tj) and peak airway 

pressure (I-P^w^ during first effort inspirations. Values of these 

parameters have been used as estimates of central output to the 

respiratory muscles. To accurately use ^~^AW 

determinants of bulbopontine activity it was important to monitor 

respiratory mechanics, i.e. effector mechanisms. Dynamic elastance 

(Ejy^) was calculated for each lung as the change in airway pressure 

per unit inspired volume at points of zero airflow during 

spontaneous tidal breathing. This is in contrast to passive 

elastance measurements obtained by manual volume inflations over the 

vital capacity range in paralyzed animals. Measurements of quasi-

static elastance (Eq^) were obtained during the apneic period of El 

maneuvers. Airway pressure of the occluded lung during the apneic 

period was divided by the volume inspired by that lung at the time 

of occlusion. Quasi-state elastance for each lung was calculated 

from 3 maneuvers performed at different volumes in the tidal range. 
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Experimental Protocol 

All 38 dogs were surgically prepared in the same manner. 

Steady-state baseline data (room air with intact vagi) were recorded 

and samples collected for evaluating blood-gas and acid-base 

status. Following the steady-state baseline period the entire 

series of airway occlusions was tested. Blood and end-expired gas 

samples and steady-state data were again collected. The same 

sequence was performed during hypoxic (both lungs, Fj02=0.1; n=12), 

and hyperoxic (both lungs, Fj02=1.0; n=14) and differential lung 

ventilation (left lung, FjN2=1.0, Fj02 = 0.0; right lung Fj02 = 1.0; 

n=18) of vagally intact dogs. Animals were allowed to breathe each 

mixture for at least 15 min or until tidal volume, frequency, blood 

and end-tidal gases remained steady for several minutes. New 

steady-state data were collected; occlusions performed, and a second 

set of post-occlusion steady state data collected. The dogs were 

returned to room air between exposures to the test gases. Baseline 

data and samples were collected during these room air recovery 

periods. Only those runs for which pre- and post-occlusion room air 

data were not significantly different were included for statistical 

analysis. Values for steady state breathing parameters were 

obtained by averaging the pre- and post-occlusion periods for the 

test gas responses and by averaging all of the room air baseline 

data. 
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Reflex responses to airway occlusions were also tested in 

unilaterally (left vagotomy, n=12; right vagotomy, n=8) and 

bilaterally vagotomized (n=12) dogs breathing room air. Bilaterally 

vagotomized dogs were also exposed to 10% O2 (n=9), 100% O2 (n=8) 

and differential ventilation (n=ll) for examining both steady-state, 

respiratory patterns and reflex responses to airway occlusions. 

Following vagotomy each animal was allowed time (25 - 40 min) to 

achieve a new steady-state breathing pattern before being subjected 

to mechanical and chemical loading. 

Statistical Evaluation 

Variables describing steady state breathing patterns during 

hyperoxic, hypoxic and differential lung ventilation were compared 

with normoxic values by one-way analysis of variance; each animal 

serving as his own control. Results reported as degree of change 

are expressed as a percent of the control value obtained during room 

air breathing of intact or vagotomized dogs where applicable. 

Paired analysis by the Student t-test was used to determine 

significant differences in the respiratory characteristics between 

unoccluded control breaths and occluded first effort breaths. 

The null hypothesis was rejected for statistical tests if 

P < 0.05. Additional details of protocol and statistical approaches 

are included with RESULTS. 
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RESULTS 

Data are presented which describe the respiratory responses to 

left, right and bilateral lung occlusions. Alterations in these 

responses during inhalation of each test gas (cf. below) and 

following partial and complete vagotomy have been analyzed. 

Quantitative evaluation of phasic lung volume reflexes was based on 

changes in steady-state respiratory patterns in a given experimental 

situation (i.e., gas breathed, vagal integrity). Therefore, values 

obtained from blood and end-tidal gas analysis and descriptive 

respiratory parameters are detailed for all steady-state conditions. 

The four test gas experimental conditions include: 1) normoxia 

(room air) - both lungs Fj02 = 0.2, 2) hypoxia - both lungs Fj02 = 

0.1, balance nitrogen plus < 1% CO2, 3) hyperoxia - both lungs FjOj 

= 1.0, and 4) differential ventilation or unilateral hypoxia - left 

lung FjN2 = 1.0, Fj02 = 0.0; right lung Fj02 = 0.9 to 1.0. 

Quantitative evaluation of the respiratory responses to 

occlusion of one or both airway(s) at specific times during the 

respiratory cycle has been separated into 'occluded breath' and 

'first effort breath' characteristics. Special emphasis is placed 

on inspiratory and expiratory durations of these breaths. The 

importance of the vagi in mediating these reflexes was ascertained 

by severing one or both vagus nerves and comparing pre- and post-

vagotomy responses to occlusions and to test gas breathing. 
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Anesthesia 

Variation in the depth of anesthesia was minimized by slowly 

administering small doses of the alpha-chloralose/urethane mixture 

approximately every hour. The depth of anesthesia was gauged by 

respiratory rate, end-tidal CO2, deep lumbar stretch reflexes and 

systemic blood pressure oscillations in phase with the respiratory 

cycle, i.e., Traube-Hering waves. Sympathetically mediated sinus 

arrhythmia and Traube-Hering waves were least apparent when the 

respiratory rate was held at about 12 breaths per minute; indicative 

of a moderate plane of anesthesia. This was also the level of 

anesthesia found most desirable for consistently demonstrating 

phasic lung volume reflexes. 

Preliminary studies revealed that rapid administration of 

chloral ose resulted in a transient (2-3 min) ventilatory depression 

and/or apnea (Figure 10). Furthermore, slow administration of too 

large a dose of chloral ose, although avoiding the transient 

response, consistently produced a Biot-type respiratory pattern 

which was sustained for several hours. These effects of the 

anesthesia were not abolished by vagotomy or by increasing the 

chemical drive to breath, e.g., during hypoxic hyperventilation. 

Blood and End-Tidal Gas Analyses 

Both the blood-gas and acid-base status (Table 1) during steady 

state normoxia are within the physiologic ranges reported for normal 

dogs spontaneously breathing room air (Pickrell and Schluter, 
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Figure 10. Respiratory effects of alpha-chloralose/urethane anesthesia. 

Records show the transient (Panel A and B) and sustained (Panel C) ventilatory 
depression resulting from rapid injection or overdose of alpha-chloralose/urethane. 
The duration of injection is indicated with the time trace at the top of each 
panel. Note differences in the time scale for each panel. Although not shown, 
restoration of normal breathing patterns in panel A and C occurred at 6 min and 118 
min, respectively following injection. This anesthetic combination has minimal 
effects on aortic (AoP) and right ventricular blood pressure (RVP) as shown In Panel 
A. 
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Table 1. Summary of blood-gas analyses and acid-base status of 38 
vagally intact anesthetized dogs breathing room air 

Mean ± SD Range 

ARTERIAL 
pH (units) 
PCO2 (mm Hg) 
pOp (mm Hg) 
BE (mEq/L) 
HCO3- (mEq/L) 

MIXED VENOUS 
pH (units) 
PCO2 (mm Hg) 
pOo (mm Hg) 
BE^(mEq/L) 
HCO3 (mEq/L) 

END-TIDAL 
Left pCOo (mm Hg) 
Left pOo (mm Hg) 
Right pCOo (mm Hg) 
Right PO2 (mm Hg) 

7.28 + 0.06 7.20 - 7.38 
56.4 + 7.4 44.3 - 62.6 
73.6 + 6.2 62.1 - 99.4 
-1.9 + 4.2 -7.9 - +8.3 
25.5 + 4.1 20.4 — 34.9 

7.25 + 0.07 7.00 7.34 
62.7 + 7.3 52.2 - 79.9 
51.1 + 9.3 40.8 - 77.2 
-1.7 + 5.0 -11.2 - +8.9 
26.5 + 4.5 18.7 - 37.5 

35.5 + 10.63 16.9 50.4 
02.5 + 14.9* 69.1 - 114.3 
38.9 + 7.1 21.5 - 47.1 
98.7 + 16.6 68.7 - 121.2 

^Values include samples from 6 dogs after correcting left lung 
dead space. 



www.manaraa.com

70 

1973). Although not statistically significant, the average ETpC02 

was generally lower (35.5 ± 10.5 vs 38.9 ± 7.1 mm Hg) and ET-p02 

higher (102.5 ± 14.9 vs 98.7 ± 16.6 mm Hg) in the left than the 

right lung. Left lung dead space was increased in six dogs to 

minimize differences in left and right end-tidal gases during the 

baseline period. 

Preliminary studies revealed a significant decrease in ETpC02 

(ca. - 12 mm Hg) of both lungs during hypoxic hyperventilation and 

of the nitrogen ventilated left lung(AET-pC02 =-16 mm Hg) during 

differential ventilation. Thereafter, changes in pH, paC02 and ET-

pC02's were minimized by adding carbon dioxide to the hypoxic 

lung(s) during 10% O2 and differential ventilation. Therefore, the 

effects of changing arterial and/or alveolar oxygen tensions were 

examined under isocapneic conditions (paC02 = 56.4 + 7.4 mm Hg). 

Arterial PO2 was significantly higher during hyperoxia (388.4 ± 

67.3 vs 74.1 + 16.3 mm Hg, P < 0.001), significantly lower during 

hypoxia (33.8 ± 2.6 vs 79.1 + 16.3 irm Hg, P < 0.001), and unchanged 

during differential ventilation (84.6 ± 27.3 vs 79.6 + 14.6 mm Hg) 

with respect to values obtained during normoxia (Table 2, cf. Table 

A-1 for mixed venous values). End-tidal PO2 values of the left and 

right lung were not significantly different from one another during 

bilateral hypoxia (44.0 ± 9.6 and 45.9 ± 8.3 ram Hg) or bilateral 

hyperoxia (422.9 ± 117.0 and 418. 7 + 116.5 mm Hg). During 

differential ventilation end tidal PO2 values of the left hypoxic 

lung (34.5 + 13.9 mm Hg) and right hyperoxic lung (381.6 ± 58.9 mm 
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Table 2. Blood-gas and acld-baso status during steady state hypoxic, hyporoxic, and differontlal ventilation with vagi Intact 

ARTERIAL 

pH (units) 

pCOg (mm Hg) 

pOg (mm Hg) 

BE (MEq/L) 

IICO^- (mEq/L) 

END-TIDAL'* 

L-ETPCOg (mm Hg) 

Hypoxia *typoroxla DIff. Vent, 
(n=12) (n=M) (n=l8) 

N 7.30 ± 0.05 

SS 7.34 i 0.05 

N 54.2 ± 5.7 

SS 47.2 ± 2.9 

N 79.1 i 16.3 

SS 33.8 i 2.6»*» 

N -1.1 ± 3.2 

SS 0.8 • 3.3 

N 25.5 i 3,2 

SS 22.0 1 3.6 

7,27 i 0.04 

7.26 i 0,06 

56.7 ± 7.2 

56.5 i 10.5 

74.1 1 16,3 

300,4 + 67.3**" 

-2.1 + 3.6 

-3.2 i 2.6 

25.5 i 3.8 

24.7 t 3.1 

7.25 1 0.05 

7.27 i 0.07 

52.5 ± 5.3 

48.2 ± 2.9 

79.6 + 14.6 

84.6 i 27.3 

-4.9 i 2.4 

-5.1 ± 2.0 

22.4 i 2.1 

21.5 i 2.8 

N 40.7 i 6.5 

SS 43.9 t 4.3 

30.1 ± 0.3 

39.6 i 9.7 

34.2 ± 10.0 

31.1 i 7.5 
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R-ETPCOg (mm Hg) 

L-ETpOg (mm Hg) 

R-ETpOg (mm Hg) 

N 40.7 ± 6.2 

SS 36.1 ± 11.4 

N 100.2 1 4.9 

SS 44.0 + 9.6»** 

N 100.4 1 13.9 

SS 45.9 + 6.3*** 

41.6 ± 4.0 

39.6 i 11.4 

99.4 ± 14.2 

422.9 ± 177.0*** 

93.9 ± 14.2 

418.7 i 116.5*** 

30.1 ± 5.1 

34.7 i 6.9 

107.3 i 13.7 

34.5 i 13.9*** 

103.4 ± 11.2 

381.6 i 58.9*** 

Values represent Maan ± SD for data obtalnod during normoxla (N) preceding Inhalation of the tost gas and 
during steady state (SS) breathing of the tost gas. Statistical confarlsons between N and SS value represented by 
***P < 0.001. 

End-tldal samples collected from the left (L) or right (R) lung as Indicated. 
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Hg) were comparable to values measured in both lungs during 

bilateral hypoxia and hyperoxia respectively; all were significantly 

different (P < 0.001) from values measured during room air 

breathing. 

Similar data were obtained from bilaterally vagotomized dogs 

during inhalation of the test gases (Table A-2). However, during 

room air breathing vagotomized dogs had slightly lower paC02 and 

slightly higher pH values due to the ventilatory pattern associated 

with vagotomy. Unilateral vagotomy did not significantly change 

either arterial or end-tidal PO2. However, compared to intact dogs, 

right vagotomized dogs did have slightly lower arterial PCO2 (42.3 ± 

0.7 mm Hg) and ETpCOg values (left lung = 29.7 ± 4.5; right lung = 

29.0 ± 5.7 mm Hg). As stated before, this was easily corrected 

prior to performing occlusions by adding CO2 to the inhaled gas 

mixtures to maintain isocapnia. 

The changes in arterial and alveolar oxygen tension while 

maintaining isocapnia and normal pH were necessary for comparing the 

effects of intrapulmonary versus peripheral chemoreflexes on steady 

state breathing patterns and reflex adjustments in these patterns 

during airway occlusions. 

Oxygen Consumption 

Oxygen consumption (VO2) by each lung was measured with closed-

circuit spirometry in 10 normoxic, 5 hypoxic, 7 hyperoxic and 5 

differentially ventilated dogs (vagi intact). Baseline VO2 averaged 
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7.7 + 0.3 ml/kg with a leftrright distribution of 38:62% (Table 

3). The distribution of oxygen uptake between the left and right 

lungs remained relatively constant during 10% and 100% O2 breathing, 

but for obvious reasons was significantly altered during 

differential ventilation. The minimal reduction in VO2 during 

differential ventilation is physiologically significant since under 

these conditions (left lung F^Og = 0.0, FjNg = 1.0; right lung, FjOg 

= 1.0), oxygen uptake is effected solely by the right hyperoxic 

lung. In fact, the driving gradient for oxygen between mixed venous 

blood and end-tidal gas was reversed in 4/5 dogs during differential 

ventilation such that oxygen was actually eliminated from the left 

hypoxic lung. This consequence of differential ventilation was 

evidenced by a downward slope on the spirometric trace. 

In all six dogs tested, a transient decrease (-31%) in VO2 was 

measured during the first 10 min of bilateral hypoxia. However, an 

unexpected reversal in oxygen consumption, returning toward and even 

slightly exceeding the baseline VO2 was observed within 20 min. 

This elevated oxygen consumption during hypoxia can probably be 

accounted for by the increased demand of the respiratory muscles 

during hypoxic hyperventilation. Hypoxia is usually accompanied by 

an increased cardiac output (Tucker and Reeves, 1975; Morgan et al., 

1968) which explains how this increased oxygen demand can be met. 

Within a given animal, hyperoxic exposure produced either an 

increase, decrease or no change in oxygen consumption compared to 

the levels measured during room air breathing. There did not appear 
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Tablo 3. ftcygon consimptlon In Individual dogs during norcnoxla, hypoxia, hyporoxia and dlfforontlal lung ventilation 

Oxygon Consumption (ml/Kg) 

' Normoxla 
(kg) (g/»00ml) i t )  

Dog No. Body Wolght Hemoglobin L:R® Normoxla Hypoxia Ityporoxla DIfft Vont,^ 

1 
2 
3 
4 
5 
6 
7 
8 

9 
10 

Mean 

SD 

25.0 
25.9 
34.1 
20.4 
30.9 
36.4 
32.7 
22.7 
36.4 
31.6 

29.6 

(+5.7) 

16.1 
13.5 
17.4 
15.8 
17.4 
16.1 
16.4 
18.2 
17.6 
15.5 

16.4 

(+1.3) 

44:56" 
37:63 
41:59 
45:55 
33:67 
29.71 
47:53 
34:66 
34:66 
36:64 

38:62 

8.7 
9.5 
9.3 
6.5 
8.2 
5.9 
8.9 
8.5 
5.0 
6.3 

7.7 

(+1.6) 

9.7 
8.7 
9.0 

6.6  
9.6 
8.8 

8.8 

(+1.0) 

8.2 

7.9 
8.0 

5.4 
6.2 

7.1 

(+1.3) 

7.2 

0.4 
6.3 

6.8 
7.3 

5.6 

6.9 

(+1.0) 

®DIstrIbutlon o f  oxygon uptako botwoon tho left and right lung oxprossod as a percent of tho total body oxygon 
consumption during room air breathing. 

''Those values have boon corrected for oxygen ollmlnatlon from tho loft hypoxic lung. There woro no significant 
changes In VO^ during Inhalation of tho 4 tost gasos. 
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to be a relationship between VO2 during hyperoxia and the 

ventilatory response to 100% oxygen breathing. 

Hemodynamics 

Average mean pulmonary arterial pressure (PAP) was 17 ± 3 mm Hg 

(range 11 - 16 mm Hg), systemic blood pressure (AoP) was 159/124 mm 

Hg (systolic/diastolic), and heart rate averaged 144 ± 16 beats per 

minute (range 102 - 162) during room air steady state breathing. 

Bilateral vagotomy usually produced a marked transient increase in 

AoP, PAP and heart rate (Figure 11). Although heart rate and AoP 

remained slightly elevated, mean pulmonary arterial pressure was 

somewhat lower than that measured prior to severing the vagi. 

In the 12 dogs tested during hypoxia mean PAP increased in 7 

dogs (APAP = 7 + 2 mm Hg) and remained unchanged in the remaining 5 

dogs. The PAP pulse contour changed in the dogs responding to 10% 

oxygen (Figure 12). Both systolic and diastolic pressures 

increased, the former more than the latter producing an elevation in 

pulmonary arterial pulse pressure. Systemic blood pressure showed a 

small transient increase (+12%) during the first 3 min of hypoxic 

exposure, but generally returned to baseline levels within 10 min. 

Changes in heart rate were inconsistent but most apparent during the 

first 5-10 min of hypoxia. The hypoxic pressor response was more 

marked in vagotomized dogs and was generally sustained throughout 

the period of exposure. Mean PAP increased from 19 ± 2 mm Hg during 

normoxia to 34 + 6 mm Hg during hypoxia in vagotomized dogs. 
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Figure 11. Effects of bilateral vagotomy on pulmonary arterial and 
systemic blood pressure. 

The traces shown include airflow and tidal volume of the 
left and right lung, esophageal pressure (Pre)» right lung 
tidal CO2 (ET-pCOo), aortic blood pressure t^oP) and mean 
pulmonary arterial blood pressure (PAP). Normal 
cardiopulmonary signals prior to vagotomy are shown to the 
left. Arrow indicates point at which the vagi were 
transected. Note the change in paper speed as indicated 
by the time trace at the bottom. Severing of both vagi 
caused an initial pulmonary and systemic hypotension (peak 
response at ca. 8 sec) followed by a more gradual increase 
in both AoP and PAP (peak responses at ca. 110 sec). The 
AoP subsided slightly but remained above the pre-vagotomy 
level. Conversely, PAP abruptly reversed and remained 
slightly below the pre-vagotomy value. Changes in AoP 
corresponded quite closely with changes in P^g. 
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Figure 12. Hypoxic pressor response and changes in steady state 
respiratory pattern. 

From top to bottom : left lung airflow and tidal volume, 
esophageal pressure (Pgg), right lung airflow and tidal 
volume, aortic blood pressure (AoP), pulmonary arterial 
blood pressure (PAP) and time trace. The ventilatory 
response to inhalation of 10% Oo is due to an increase in 
breathing frequency without a cMange in tidal volume. 
Increased esophageal pressure is indicative of more 
forceful breathing efforts during hypoxia. Hypoxia in 
this particular dog was associated with an elevated pulse 
pressure and mean pressure in both the systemic and 
pulmonary circulation. 
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Vagotomy itself produced an increase in heart rate (+16%) which was 

further increased (+9%) during hypoxia in these dogs. The increase 

in AoP (+14 mm Hg) observed following vagotomy was not affected by 

hypoxia. 

Mean PAP increased (8/14 dogs), decreased (4/14 dogs) or 

remained unchanged in (2/14 dogs) during inhalation of 100% O2 by 

vagally intact dogs. Systemic blood pressure decreased (Mean AAoP= 

-14%) in all cases except one. A slight increase in heart rate 

associated with the reduced AoP indicates that the baroreflex was 

still operating during hyperoxia. 

The pressor response during differential ventilation was 

slightly more delayed than during 10% and 100% O2 breathing. Peak 

pulmonary arterial pressures (range 20 to 35 mm Hg) were attained at 

20+6 minutes. Systemic blood pressure either slightly increased 

or remained unchanged while heart rate averaged an increase (+14 

beats per minute) in 70% of the dogs tested. 

Steady State Breathing Patterns (SSBP) 

SSBP: Baseline (room air, intact) 

Average values of ventilatory parameters and lung mechanics for 

all 38 vagally intact dogs during normoxia are presented in Table 

4. The respiratory cycle duration of 5.14 + 0.12 sec (breathing 

frequency ca. 12 breaths per min) was phase-switched with an 

expiratory/inspiratory time ratio (T^/Tj) of 3.26 + 0.08. It is 

apparent from Figure 13 that the frequency distribution of minute 



www.manaraa.com

82 

Table 4. Summary of respiratory data in 38 dogs during 
steady state room air breathing with vagi intact 

Variable^ Mean ± SEM 

Tj (sec) 1.20 ± 0.02 
Tg (sec) 3.94 ± 0.11 

Ttot (sec) 5.14 ± 0.12 

^l/TyOT (^) 26.9 ± 0.3 

v^TOT (%) 73.1 ± 0.3 

Te/Ti 3.26 t 0.08 
Vj'- (ml) 162 ± 2 
V/ (ml) 251 ± 2 
Vj (ml) 413 ± 3 
VyVVy (%) 39.2 ± 2.1 
Vj'^/Vj (%) 60.8 ± 2.1 
Vj'-/Tj (ml/sec) 142 ± 2 
V//Tj (ml/sec) 187 ± 0.3 
Vg (L/min) 5.30 ± 0.09 

I-PAW*" (cm HgO) 1.15 ± 0.02 

I-P^w^ (cm H2) 1.53 ± 0.03 

E-PAw^ (cm HgO) 1.41 ± 0.02 

E-Pa/ (cm HgO) 1.52 ± 0.02 

i-pAW^/^I (cm H^O/sec) 1.08 ± 0.03 

I-Paw'^/Ti (cm H^O/sec) 1.50 ± 1.06 

Pg^ (cm H2O) 8.27 ± 0.14 
I-pL (L/min) 13.5 ± 0.1 
I-F^ (L/min) 15.4 + 0.2 
E-pL (L/min) 16.1 ± 0.1 
E-F* (L/min) 16.8 ± 0.2 

^dyn'" (°" H2O/L) 7.3 t 0.1 

ejyn* (cm hgo/l) 7.6 ± 0.1 

*Refer to ABBREVIATIONS. 
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Figure 13. Frequency histograms of expiratory, inspiratory and total cycle duration as well as 
minute ventilation during spontaneous room air breathing in anesthetized dogs. 

The skewed distributions of Tg and Ttqj correspond quite closely, e.g., slower 
breathing frequencies (longer TJQJ) are associated with longer expiratory 
durations. Inspiratory duration and minute volume were more normally distributed and 
inversely related. Bars are drawn over midpoint values of each interval. 
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ventilation corresponds closely to that of Tj while the distribution 

of respiratory rate parallels that of Tg. The 

physiological significance of these observations will become more 

apparent when the input-output relationships of the respiratory 

pattern generator(s) are altered by vagotomy and/or changes in 

inspired oxygen. 

During spontaneous room air breathing there were significant 

differences (P < 0.05) between the right and left lungs for tidal 

volume (Vy), inspiratory airway pressure and inspiratory 

airflow (I-F). Tidal volume averaged 413 ± 3 ml (ca. 13.5 ml/kg) 

with a leftrright tidal volume ratio of 39.61%. This ratio remained 

quite consistent considering the wide range of volumes measured in 

these dogs (Figure 14). Right lung I-P^^ was 33% higher than left 

lung inspiratory airway pressure. However, inspiratory airflow of 

the right lung was only approximately 14% greater than that measured 

in the left airway. These differences can be partially accounted 

for by the larger Vj and somewhat greater elastic recoil of the 

right lung. Upper airway resistance of both lungs was nearly 

i denti cal. 

Dynamic elastances of the right and left lung (7.6 ±0.1 and 

7.3 + 0.1 cm HgO/L.s, respectively) were not significantly 

different. remained relatively constant throughout the course 

of the experiments during all room air breathing periods in vagally 

intact dogs. 
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Figure 14. Frequency histogram of total lung tidal volume and the 
left and right lung volumes expressed as a percent of the 
total volume. 
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SSBP: effects of vagotomy 

Relative changes (Table 5) and absolute values (Table A3) for 

respiratory cycle characteristics obtained before and after right, 

left and bilateral vagotomy are presented. For statistical analysis 

the value of each respiratory parameter after vagotomy has been 

paired with the value obtained prior to vagotomy in each animal. 

Severing of either the right or left vagus nerve unexpectedly 

decreased Tjgj. The effect was more pronounced with right vagotomy 

(-33.9%, P < 0.05) than with left vagotomy (-9.4%). The increased 

breathing frequency (decreased TJQJ) produced by right vagotomy was 

due to disproportionate shortening of both Tg (-40.2%, ? < 0.05) and 

Tj (-11.2%) such that the Tg/T^ ratio significantly decreased (P < 

0.05) from 3.81 ± 0.26 before to 2.40 ± 0.22 after cutting the 

nerve. Expiratory duration was also slightly shortened (-13.9%) 

following left vagotomy. However, Tj was slightly prolonged from 

1.34 t 0.02 sec before to 1.45 ± 0.08 sec after left vagotomy. The 

changes in T^ and Tj, being in opposite directions (T^ decreased 

while Tj increased), resulted in a small decrease in the phase-

switching Tc/Tj ratio. 

The changes in tidal volume produced by unilateral vagotomy 

were very specific. Right vagotomy caused an increase (+15.9%, 

P < 0.05) in right lung Vj from 207 ± 12 ml to 240 ± 8 ml without 

altering left lung Vj. Similarly, left vagotomy produced a 13.8% 

increase (P < 0.05) in left lung Vj (152 ± 3 before to 173 ± 12 ml 

after) without affecting right lung volume. The combination of 
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Table 5. Relative changes in respiratory cycle characteristics during 
spontaneous room air ventilation following left, right and 
bilateral vagotomy 

Variable® 

Left 
Vagotomy 
(n=12) 

Right 
Vagotomy 

(n=8) 

Bilateral 
Vagotomy 

(n=12) 

Tl + 7.7b -11.2 +79.0* 

:E -13.9 -40.2* +14.4 

"""tot - 9.4 -33.9* +29-4* 

t^/ti —18.0 -37.0* -41.2* 
+13.8* - 0.5 +66.1* 

VTR — 1.0 +15.9* +62.8* 
+ 5.3 + 8.6 +64.3* 

V^/T, + 7.0 + 8.1 - 4.9 

v^/ti -11.4 +23.5 -11.4 

VE + 7.9 +63.8* +26.6* 
+17.2 +10.9 +18.8 
+11.2 +20.1* +14.9 

o. 1 +10.3 +17.9 -30.6** 

I-^AW^/Tl + 6.2 +28.5 -36.4* 

^ES, — +12.6 + 1.3 
I-pL + 8.6 + 6.0 + 3.9 
i-pR — 0.7 +15.1* + 0.6 
E-pL +12.7 + 5.4 + 0.0 

E-^ + 6.3 + 7.7 +16.2 
r L 
^dyn + 4.3 +12.5 -27.8* 
r R 
dyn +10.7 + 7.3 -29.0* 

*Refer to ABBREVIATIONS. 

^Values represent average percent change in treatment value from 
the value obtained in the intact animal. Significant differences 
represented as: *P < 0.05, **P < 0.01. 
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frequency and tidal volume changes were manifested as an unchanged 

minute ventilation following left vagotomy. However, a significant 

increase in (+63.8%, P < 0.05) was associated with right 

vagotomy. This explains the decrease in paC02 and slight increase 

pH measured in the latter group. 

The respiratory pattern observed following bilateral vagotomy 

was definitely not just a summation of the effects due to abolition 

of left and right vagal innervation taken separately. In the first 

instance and unlike the effect of either left or right vagotomy, 

bilateral vagotomy significantly prolonged T-j-Q-p (+29,4%, 

? < 0.05). The change in T-j-gj was due to lengthening of both Tj 

(1.13 ± 0.04 before to 2.02 ± 0.06 sec after, P < 0.05) and Tg (3.73 

t 0.08 before to 4.27 ± 0.11 sec after). The phase-switching index, 

(T^/Tj) significantly (P < 0.05) decreased from 3.23 ± 0.12 before 

to 1.90 + 0.09 after vagotomy. Secondly, increases in tidal volume 

of equal relative magnitude (left lung, +66.1%; right lung, +62.8%; 

both P < 0.05) were measured. 

Both left and right unilateral vagotomies resulted in small 

increases in dynamic elastance of both lungs with a larger increase 

occurring in the lung contralateral to the vagotomy. Conversely, 

bilateral vagotomy resulted in a significant (P < 0.05) decrease in 

left lung (-27.8%) and right lung (-29.0%). 

Indirect evidence that vagotomy disrupted the normal pattern of 

respiratory center output (phrenic efferent pattern) is suggested by 
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the extremely irregular flow patterns. Typical recordings are shown 

in Figures 15 and Bl. 

Analysis of steady state breathing patterns was necessary in 

these studies. It was these patterns upon which mechanical and 

chemical loads were superimposed. However, the purpose of this 

study was to describe phasic lung volume reflexes. Such reflexes 

represent the immediate respiratory compensation to an altered input 

(chemical or mechanical). Occlusions of one or both airways at 

different times in the respiratory cycle were used to alter sensory 

input to the respiratory center. Although overlooked in the early 

experiments, it became apparent that the first few breaths following 

unilateral and/or bilateral vagotomy also represent immediate 

respiratory compensation to an altered input. 

The immediate ventilatory responses to left, right and 

bilateral vagotomy were unrelated to both the eupneic pattern prior 

to severing the nerve(s) and to the new steady state rhythmic cycles 

25-40 minutes after vagotomy. This observation is particularly 

relevant in that the Hering-Breuer reflexes are generally used to 

extrapolate information concerning mechanisms of respiratory pattern 

control. 

Unilateral vagotomy produced characteristic breathing patterns 

specific to left or right vagotomy. Severing the left vagus (Figure 

16) usually produced an immediate increase in left lung tidal volume 

without affecting right lung Vj and without any interruption in 

breathing frequency. Left vagotomy produced gasping in several dogs 
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Figure 15. Irregular Inspiratory airflow pattern following bilateral vagotoii\y indicates 
disruption in the phrenic motor output to the diaphragm. 

Airflow, tidal volume and airway pressure (P^u) of the left and right lung as well as 
right ventricular pressure (RVP) traces are shown. Note different calibrations and 
time scale for recordings obtained 22 min after transecting both vagi. Vagotomy 
produced a significant decrease in frequency and increase in tidal volume, and 
airflow. Discontinuous phrenic output Is evidenced by irregular inspiratory airflow 
signals and resetting of the volume integrator to zero (arrows) between inspiration 
and expiration. Heart rate increased from 120 to 180 beats/min and RVP remained 
unchanged following bilateral vagotomy. 
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Figure 16. Immediate ventilatory response to left vagotomy. 

Traces shown include airflow, tidal volume and airway 
pressure (P^^) of the left and right lungs and aortic 
blood pressure (AoP). Arrow on time scale (10 sec) at the 
bottom indicates the point at which the left vagus was 
cut. Unilateral vagotomy produced a transient hypotension 
(peak response at 12 sec) followed by a rapid recovery to 
normal. These changes in AoP corresponded to the initial 
decrease and subsequent increase in respiratory 
parameters. Breathing frequency was slightly higher 
following left vagotomy. 
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without causing tidal volume changes in either lung (Figure 17). 

Right vagotomy produced apnea or an immediate change in frequency 

with small increases in right lung Vj and/or left lung Vy (Figures 

18, B2 and 63). Apnea of variable duration (2-18 sec) was the 

predominant response to bilateral vagotomy. This was followed by an 

abrupt increase in Vj of both lungs and regular, but slower rhythm 

(Figures 19, B2, B3, and B4). This pattern persisted with minimal 

changes throughout the remainder of the experimental period. 

SSBP: Effects of changing inspired Oo tension 

The steady state breath profiles were noticeably different 

during hypoxia and hyperoxia (Figure 20). The immediate ventilatory 

response to bilateral hypoxia (both lungs Fj02 = 0.1, pa02 = 33.8 ± 

2.6 mm Hg) as shown in Figure 21 was similar to that observed during 

steady state hypoxia (Table 6, Table A4). A two-fold increase in 

minute ventilation from 5.11 ± 0.61 to 10.08 ± 1.22 L/min (P < 0.001 

was due strictly to an increase in breathing frequency, i.e., 

decrease TJQJ from 5.71 ± 0.16 to 2.19 ± 0.09 sec (P < 0.001). 

Tidal volume remained relatively unchanged. The tachypnea was due 

to disproportionate decreases in Tj (-33%, P < 0.001) and and Tg (-

69.6%, P < 0.01). The T^/Tj ratio decreased (P < 0.01) from a value 

of 3.61 ± 0.42 during normoxia to 1.65 ± 0.11 during hypoxia. 

Bilateral hyperoxia (both lungs Fj02 = 1.0, paC^ > 350 mm Hg) 

did not significantly affect minute ventilation. However, the 

frequency of breathing was notably slower than that observed during 
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Figure 17. Transient ventilatory response to left vagotomy. 

Traces represent airflow, tidal volume and airway pressure (Paw) of the left and 
right lung and aortic (AoP) and pulmonary arterial (PAP) blood pressure. Note the 
changes in time scale. Left vagotomy (arrow) produced a gasping response of 8 sec 
duration. This was abruptly converted to a rhythmic respiratory pattern which was 
indistinguishable from that observed prior to vagal transection. The cardiovascular 
response consisted of a very short (< 2 sec) bradycardia and systemic hypotension 
followed by rapid recovery of both. PAP was not significantly affected by the 
procedure. 
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Figure 18. Immediate ventilatory and cardiovascular responses to right vagoton\>' and bilateral 
vagotonw in the same animal. 

Traces represent airflow, tidal volume and airway pressure (P«u) of the left and 
right lung, esophageal pressure (Pcc) and right ventricular pressure (RVP). Time of 
nerve transection is indicated by tne arrows on the time trace. Note that 43 min 
elapsed between cutting of the right and left vagi. Right vagotonw produced small 
Increases in tidal volume of both lungs canpared to the volume changes following 
bilateral vagoton\y. Conversely, the Initial frequency response was more marked after 
right vagotomy than bilateral vagotomy. Both procedures produced an increase in RVP. 
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Figure 19. Immediate ventilatory response to bilateral vagotomy* 

Traces represent airflow, tidal volume and airway pressure (P/\ij) of the left and 
right lung and esophageal pressure (Pgc). Expanded time scales in panel A (pre-
vagotomy) and C (post-vagotomy) show characteristic breath profiles in the two 
conditions. Note the change in volume calibration in panel C. Vagal transection 
(arrow) produced an initial decrease in tidal volume and slowing of frequency (panel 
B). These changes were followed by an abrupt increase in tidal volume and frequency 
within 20 sec after bilateral vagotomy. 
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Figure 20. Characteristic breath profiles observed during normoxia, hyperoxia and hypoxia. 

Airflow, tidal volume and airway pressure (P/\ij) of the left and right lung, 
esophageal pressure (Pgc) and pulmonary arterial pressure (PAP) traces are shown. 
Inspiration is represented by downward deflections. The decreased breathing 
frequency associated with inhalation of 100% Op and the increased frequency response 
during 10% O2 breathing were predominantly due to changes in the duration of 
expiration. Pulmonary arterial pulse pressure was slightly elevated during hypoxia 
and hyperoxia although mean PAP remained unchanged. 
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Figure 21. Transient response and steady state breathing pattern observed during inhalation of 
10% oxygen. 

Traces represent airflow, tidal volume and airway pressure (PAU) of the left and 
right lung and esophageal pressure (P^c) recordings. The ventilatory response to 
hypoxia begins within the first few breaths of exposure (arrow). Tidal volume 
remains relatively constant. However, P^^,, Peg and respiratory rate progressively 
Increase. The change in breathing frequency during steady state hypoxia (far right 
panel) is due primarily to shortening of expiratory duration. Note the change in 
paper speed as indicated on time scale. 
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Table 6. Effects of hypoxic, hyporoxic and difforontlal lung vontllatlon on steady stato respiratory cycIo 
paramotors In vagally Intact dogs 

Avorago Oiango from Normoxla 

Variable^ IfypoxIa {n=l2) If/poroxia (n=l4) DIff, Vent» (n=l8) 

TOT 

T,/T, 

V//T, 

v;vt, 

l-P AW 

l-P AW 

-33.1*** 

-69.6** 

-61.6*** 

-54.3** 

-10.1 

-10.3 

-10.2 

+33.6* 

+28.8* 

+97.I*** 

+16.4** 

+19.7* 

+ 1.0 

+25.0* 

+19.2* 

+22.2* 

+12.8* 

+18.2* 

+15.7* 

+ 9.5* 

+12.7** 

- 1.6 

+ 5.0 

+ 13.9 

- 5.8 

-18.8* 

-15.4* 

-16.9** 

- 1.4 

+ 4.9 

+ 2.0 

+ 7.1 

+10.6 

+22.6* 

+ 5.0 

+13.9 
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'-"•aw". 

ES 

l-f^ 

I-F' 

e-f*^ 

E-F 

dyn 

dyn 

+63.2*** 

+68.0* 

+18.3 

+23.2** 

+21.0** 

- 2.7 

- 5.9 

+23.6 

+21.3* 

+ 4.0 

+ 0.1 

+ 8.9* 

+ 4.8* 

+ 7.8* 

+ 5.5* 

+ 4.9* 

- 6.4 

- 6.3 

+22.6** 

+32.1** 

+22.8* 

+ 4.4 

+14.7* 

+ 0.5 

+ 0.5 

+ 4.5 

+ 3.6 

®Valuos roprosont moan chango In paramotor during tost gas breathing whon compared to that measured during 
normoxla. Significant difforoncos Indicated by: *P < 0.05, **P < 0.01, ***P < 0.001. 

''Refer to ABBREVIATIONS. 
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room air breathing (Figure 20). Tidal volumes of the right and left 

lungs showed parallel increases (both P < 0.05) of +18% and +13% 

respectively. The frequency response (ATyQy from 4.50 + 0.10 during 

normoxia to 5.36 + 0.06 sec during hyperoxia) was due to lengthening 

of Tg (+25%, P < 0.05); Tj remained unchanged. 

The ventilatory response to differential ventilation (left lung 

F1N2 = 1.0; Fj02 = 0.0; right lung Fj02 = 1.0; pa02 = 84.6 + 27.3 mm 

Hg) was unexpected since arterial oxygenation was comparable to that 

measured during room air breathing (pa02 = 79.6 + 14.6 mm Hg). The 

increase in minute ventilation (+22.6%, P < 0.05) was due solely to 

an increase in breathing frequency (decrease in Tjg-]- from 4.54 + 

0.06 during normoxia to 3.84 ± 0.07 sec during differential 

ventilation) with negligible volume changes. The frequency response 

was due to decreases in both Tg (-18.8%, P < 0.05) and Tj (-5.8%) 

such that the phase switching T^/Tj ratio decreased from a value of 

2.74 ± 0.42 during normoxia to 2.27 + 0.36 (P < 0.01) during 

differential ventilation. 

Neither differential ventilation nor 100% oxygen breathing had 

any effect on dynamic passive elastance of the left or right lung. 

However, bilateral hypoxia did produce a significant increase 

(P < 0.05) in both left lung elastance (+24%) and right lung dynamic 

elastance (+21%). 
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SSBP: Effects of changing FjOo in bilateraTTy vaqotomized dogs 

Bilateral vagotomy did not significantly alter the frequency 

response to acute hypoxia (Table 7, Table A5 ) which consisted of a 

decrease in tJQJ, T^, tJ and the t^/Tj phase-switching index-

However, the Vj response to hypoxia in vagotomized dogs was opposite 

that which occurred in vagally intact dogs. The hypoxic ventilatory 

response of vagally intact dogs was associated with a small 

reduction in Vj. However, vagotomized dogs had a larger Vj (+15.5%, 

P < 0.08) during hypoxic ventilation compared to Vy during room air 

breathing (Figure 22). The increased breathing frequency and 

elevated tidal volume of bilaterally vagotomized dogs breathing 10% 

O2 resulted in a 79% increase (P < 0.05) in minute ventilation. 

Minute ventilation increased from 7.86 ± 0.88 to 10.01 ± 1.20 

L/min (P < 0.05) during 100% O2 breathing in vagotomized dogs. The 

ventilatory response was characterized by increases in left lung Vj 

(+33.2%, P < 0.05) and right lung \'j (+29.8%, P < 0.05) without a 

concomitant change in respiratory rate. 

The ventilatory response to differential ventilation in BVX 

dogs was almost identical to the pattern observed during hyperoxia 

in BVX dogs. The minute volume response (+52.3%, P < 0.01) was 

characterized by increases in left Vj (+44.6%, P < 0.05) and right 

VJ (+50.7%, P < 0.05) without a change in respiratory rate. This 

pattern is exactly opposite that produced during differential 

ventilation of vagally intact dogs. Prior to vagotomy the increased 
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Table 7. Relative changes in steady-state respiratory cycle 
characteristics in bilaterally vagotomized dogs during 
hypoxic, hyperoxic and differential lung ventilation 

Variable^ 
Hypoxi a 

(n=9) 
Hyperoxia 

fn=8) 
Diff. Vent 

(n=ll) 

Tl -23.8^ -3.3 -14.5 

TE -62.3* -8.0 -7.9 

"•"tot -49.9 -6.5 -10.0 

TE/tJ -45.3* +6.3 +11.6 
+17.0 +33.2* +44.6* 

v/ +14.4 +29.8* +50.7* 

h +15.5 +31.4* +48.0* 

—
1 

+41.6* +39.0 -63.6** 

v//Ti +40.6* +38.0 +70.6** 

h +78.6* +27.4 +52.3** 
—3.0 +8.5 +37.2 

I-Paw" +7.4 +5.2 +4.3 
+10.8 +18.3 +55.9* 

I-faw*/Tl +25.6 +10.9 +18.6 

"ES, +31.5 -5.9 +13.7 
I-pL +42.8 +16.3 +22.6 
i-pR +15.0 +26.6 +53.2 
E-pL +31.0 +32.3 +21.3 
E-pR +9.5 +14.9 +37.3 

u -15.8 
-7.6 

-21.1 
-16.7 

-3.5 
-30.3* 

*Refer to ABBREVIATIONS. 
"Average percent difference from paired nonnoxic control values 

with statistical significance indicated by: *P < 0.05, **P < 0.01, 
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Figure 22. Immediate ventilatory responses to acute hypoxia with and without vagi intact. 

Traces represent airflow, tidal volume, and airway pressure (P^w) of the left and 
right lung and esophageal pressure (Prg). Note the changes in calibrations and paper 
speed. The time which has elapsed between each panel is indicated on the time 
trace. Solid bars on time trace represent inhalation of 10% Op. All other traces 
were obtained during room air breathing. The "on-off" frequency and tidal volume 
changes, when switching between room air and 10% Op breathing, are less apparent in 
the intact dog (Panel A and B) than in the vagotomTzed condition (Panel C and D). 
Expanded time traces in Panel A and C show more clearly the effects of vagotomy on 
Tp Tg, frequency, and airflow pattern. 
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minute volume response to DV was due to frequency changes with tidal 

volume remaining constant. 

Vagally intact dogs maintained rather constant steady state 

patterns during inhalation of the test gases for 2-3 hours. 

However, three bilaterally vagotontized dogs became apneic at 12, 18 

and 32 min of hypoxic exposure. One dog died because of ventricular 

fibrillation. The other two, when removed from the hypoxic stimulus 

and artificially ventilated, resumed spontaneously rhythmic 

breathing within 8 minutes. Four vagotomized dogs showed irregular 

breathing patterns within 2 minutes after initiating the 

differential ventilation (Figure 23). None of these dogs resumed 

normal rhythmic breathing when returned to room air. Data from 

these 7 vagotomized dogs with arrhythmic breathing responses were 

excluded from quantitative statistical evaluation. These apparently 

enhanced responses to chemical stimuli may represent increased 

sensitivity of central respiratory activity in the absence of vagal 

inhibition (Bartoli et al., 1973) 

Reflex Respiratory Responses to Airway Occlusions 

Reproducibility of reflex responses to the six types of airway 

occlusion maneuvers within a single animal was determined by 

analyzing the variance among three repetitions of the same maneuver 

under every experimental condition. Less than 10% error among the 

three repetitions was acceptable. 
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Figure 23. Arrhythmic respiratory pattern associated with differential ventilation in a 
bilaterally vagotoinized dog. 

Traces shown are airflow and tidal volume of the left and right lung, esophageal 
pressure (P^g) and time scale. Differential ventilation was initiated at the 
arrow. An unusual breathing rhythm developed within 2 min. The cyclic pattern 
consisted of apneic periods (ca. 20 sec) Interposed between periods of apparently 
normal breathing (ca. 40 sec). The respiratory rate during the 10-15 sec period 
preceding the apneic episodes showed progressive slowing. 
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To be certain that repeated testing and/or duration of 

anesthesia were not responsible for altering the responses; 

preliminary studies were performed (four dogs) during which the 

entire sequence of occlusions was consecutively performed four times 

during a nine hour period. No consistent enhancement or attenuation 

of the responses was observed outside the limits of variation 

considered acceptable. Therefore, alterations in the reflex 

respiratory responses to airway occlusions could be attributed to 

changes in inspired oxygen and/or vagal integrity as described 

bel ow. 

Occluded breath 

Occlusions set at end-expiration, whether unilateral or 

bilateral, did not affect the breath during which the airways were 

restricted for any of the gases tested (Figure 24). However, 

occluding one or both airway(s) at peak inspiration caused an abrupt 

termination of the inspiratory effort and an apneic period of 

variable duration (T^). The apnea was held in the expiratory 

position as evidenced by a positive pressure plateau in the airway 

of the occluded lung(s). Receptive relaxation and gas absorption 

during the apneic period resulted in a small reduction in airway 

pressure of the occluded lung(s). Only those occlusions for which 

airway pressure fell by less than 10% during the apneic period were 

accepted for statistical analysis. As described in METHODS, a 

larger decrease (greater than 10%) in airway occlusion pressure vas 
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Figure 24. Records comparing the effects of end-expiratory and end-inspiratory airway occlusion 
on the breath during which the airways were restricted. 

Traces include airflow, tidal volume and airway pressure (P.^) of the left and right 
lung, esophageal pressure (P^o) and right ventricular pressure (RVP). Onset (arrow) 
and duration (heavy black line) of occlusion are indicated on the time trace. 
Inspiration produces a downward deflection for respiratory parameter signals. 
Occlusion of the right lung at end expiration (RLO-EE) has no affect on the occluded 
breath as seen by the continuous respiratory cycling. Occlusion of the same lung at 
end-Inspiration (RLO-EI) interrupts the nomial respiratory pattern by prolonging the 
occluded breath, i.e., producing apnea. 
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indicative of incomplete separations of the two lungs or of a leak 

in the external apparatus. 

An increase in the apneic pressure plateau of the left hypoxic 

lung was often observed during differential lung ventilation. This 

may perhaps be accounted for by a reversed oxygen gradient 

(P-O2 - ETp02 is positive) with subsequent oxygen elimination 

measured in the left hypoxic lung. During differential ventilation 

of intact dogs, end-tidal PO2 of the hypoxic left lung averaged 34.5 

± 13.9 mm Hg with a simultaneously measured mixed venous PO2 of 57.0 

± 5.7 mm Hg. 

A progressive increase in the apneic pressure plateau was also 

apparent (Figure 25) in one dog which became hyperthermic (body 

temp. = 106®F). This might be explained by the effect of thermal 

gas expansion, i.e., Boyles' Law, or by activation of normally 

quiescent expiratory muscles. Although this dog had to be 

eliminated from study, observations were made which implicate a 

facilitory influence of body temperature in respiratory pattern 

control and mechanical lung reflexes. 

Airway occlusion (left, right and bilateral) at peak 

inspiration of vagally intact dogs produced significant prolongation 

of the occluded cycle during inhalation of all four test gases 

(Table 8). With the exception of differentially ventilated dogs, 

the apneic period of BLO-EI was greater than RLO-EI which ves 

greater than LLO-EI. Summation of the apneic prolongation produced 

by unilateral occlusions was very close to that produced by 
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Figure 25. Effects of elevated body temperature on the reflex 
respiratory response to bilateral airway occlusion set at 
peak inspiration. 

Traces represent airflow, tidal volume and airway pressure 
(Paw) of the left and right lung and esophageal pressure 
(Pgg). Inspiration produces a downward deflection on all 
traces. Onset (arrow) and duration (heavy black line) of 
occlusion are indicated on the time trace. Unlike in 
normal dogs (cf. Figure 27), the first breath is 
characterized by short gasping inspiratory efforts and 
very prolonged expiratory durations during which airway 
pressure progressively increases. Furthermore, 
hyperthermia appears to have an inspiratory facilitating 
effect and thereby eliminates the apneic response to these 
maneuvers. 
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Table 8. Absolute prolongation of respiratory cycle duration caused by 
occluding the airway(s) at peak inspiration 

TOTAL CYCLE DURATION (sec) 

RLO-EI LLO-EI BLO-EI 

I-Room Air 5.09 + 1.36**** 3.25 + 0.69*** 8.52 + 1.36*** 
I-Hypoxia 3.93 + 1.89* 0.99 + 0.38* 5.37 + 1.71** 
I-Hyperoxia 9.30 + 2.18;** 6.69 +• 1.64*** 19.17 + 3.22*** 
I-Diff. Vent. 14.88 + 8.49° 19.61 + 9.94C 20.00 + 6.55** 

LVX-Room Air 0.59 + 0.63 

cn C
O

 o
 1 + 0.63 2.04 + 0.60** 

RVX-Room Air -0.47 + 0.64 8.66 + 2.96* 9.52 + 4.28 

BVX-Room Air 0.21 0.05 0.10 + 0.04 -0.41 + 0.18 
BVX-Hypoxia 0.03 + 0.09 0.04 + 0.15 -0.12 + 0.02* 
BVX-Hyperoxia —0.04 + 0.06 0.10 + 0.21 0.35 + 0.29 
BVX-Diff. Vent. 0.0 + 0.12 -0.24 + 0.18 -0.64 + 0.57 

^Values represent Mean + SD and are given in units of time (sec). 
Significant prolongation of cycle duration due to occlusion is 
represented as: *P < 0.05, **P < 0.01, ***P < 0.001. 

= 0.1052. 

^P= 0.0742. 
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bilateral occlusion during normoxia, hypoxia and hyperoxia, but 

significantly less during differential ventilation. 

There was considerable variation in the apneic durations 

produced by unilateral occlusions in DV dogs with intact vagi. As 

indicated in Table 8, TJQJ prolongation due to right lung occlusion 

(14.88 ± 8.49 sec, P = 0.1052) and left lung occlusion (19.61 ± 9.94 

sec, P = 0.0742) did approach statistical significance. 

When occlusion-induced apnea is expressed in units of time it 

appears as if the Hering-Breuer inspiratory-inhibiting reflex is 

stronger in hyperoxic dogs and weaker in hypoxic dogs when compared 

to nonnoxic control responses (Figures 26 and 27). In other words, 

TyoT prolongation due to left, right or bilateral airway occlusion 

at end-inspiration can be expressed in order of increasing magnitude 

as: hypoxia < normoxia < hyperoxia < differential ventilation. 

The apneic response, i.e., inspiratory-inhibition, was 

eliminated by bilateral vagotomy. In fact, BLO-EI actually 

shortened (-0.13 ± 0,02 sec, P < 0.05) the occluded cycle of 

vagotomized dogs during room air, hypoxic and differential 

ventilation. Severing one vagi not only eliminated the apneic 

response elicited by occlusion of the ipsilateral lung, but actually 

shortened the occluded cycle in many cases. Unilateral vagotomy did 

not eliminate the apneic response to EI occlusion of the 

contralateral 1ung. 

These results are not entirely indicative of pulmonary stretch 

receptor adaptation and may be somewhat misleading. The present 
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Figure 26. Augmentation of inspiratory-lnhibitlon elicited by right lung airway occlusion during 
inhalation of 100% oxygen. 

Traces represent airflow, tidal volume and airway pressure (Pam) of the left and 
right lung, esophageal pressure (Ppr) and right ventricular pressure (RVP). 
Inspiration produces a downward deflection for all respiratory signals. The right 
lung has been occluded at peak inspiration of the third breath in each panel. The 
apneic response to RLO-EI is much longer during 100% 0» breathing (T* = 24.5 sec) 
than during room air breathing (Ty^ = 8.5 sec). 
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Figure 27. Attenuation of the Hering-Breuer apneic response during 10% oxygen breathing. 

Traces represent airflow, tidal volume and airway pressure (P.w) of the left and 
right lung, esophageal pressure (Pec) and right ventricular pressure (RVP). 
Inspiration produces a downward deTTection for all respiratory signals. Onset 
(arrow) and duration of occlusion (heavy black line) are superimposed on the time 
trace. Note differences in P/^^ and Pgg calibrations as well as time scale during 
hypoxia. Bilateral lung occlusion is set at end-inspiration of the second breath in 
both panels. The apneic response to BLO-EI is significantly longer during room air 
breathing (T^ = 19 sec) than 10% O2 breathing (T^ = 3.2 sec). 
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studies indicate that the apneic duration is 'partially' determined 

by humoral mechanisms, i.e., the chemical drive to breathe existing 

at the time of airway restriction. During room air, 10% O2 and 100% 

O2 breathing, the apneic duration appears to be related to the level 

of minute ventilation and steady state arterial oxygen tension 

present at the time of occlusion (Figure 28). Discordant results 

were obtained during differential ventilation. The apneic durations 

for all three EI maneuvers during DV were longer than those measured 

a t  comparable  l eve l s  o f  pa02  and  produced  by  room a i r  

breathing. Furthermore, the variation among right, left and 

bilateral EI responses during DV was markedly reduced. 

In order to eliminate the dependency of apneic duration on 

ventilatory level the data were normalized. The reflex apneic 

response to airway occlusion at peak inspiration (RLO-EI, LLO-EI and 

BLO-EI) was quantitatively assessed as the ratio TYQyO/TyQy where 

Ttot° is duration of the occluded breath and Tjgj is duration of the 

preceding control breath (Table 9). Prolongation of the occluded 

breath was more pronounced for right lung occlusion than left lung 

occlusion (Figure 29) and significantly (P < 0.05) greater for 

bilateral occlusion during normoxia, hypoxia and hyperoxia in dogs 

with vagi intact. However, during differential ventilation, 

occlusion of the hypoxic left lung resulted in a longer apneic 

period than occlusion of the hyperoxic right lung (TyoyO/TyQy = 6.10 

± 1.20 and 4.87 ± 0.43, respectively). Furthermore, bilateral 
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Figure 28. Effects of minute ventilation and arterial oxygen tension on the apneic response to 
end-inspiratory occlusion of one or both airway(s). 

Apneic duration is measured from the time of airway occlusion at end-inspiration to 
the beginning of the first inspiratory effort against occlusion. Solid lines are 
aproximations drawn through points which represent mean values obtained from 3 dogs 
exposed to all 4 test gases (symbols). Two relationships are apparent in these 
graphs. Firstly, the apneic duration generally lengthened as ventilation decreased 
with concomitant increases in FyOg and thus paOg. Secondly, at any level of arterial 
oxygen, the apnea was most prolonged for bilateral occlusions, less for right lung 
occlusions and least for left lung occlusions. Neither of these relationships apply 
during differential ventilation when Fj02 is changed without altering pa02. 
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Tablo 9, Strength of Inspiratory-Inhibitory reflex expressed as a ratio between the duration of the occluded 
breath and the duration of the preceding control breath 

TOT '/^tot^ 

RLO-EI LLO-EI BLO-EI 

INTACT 

Room Air 
Hypoxia 
Ityperoxla 
DIff, Vent. 

1.99 ± 0.07*** 
2.79 + 0.12* 

2.74 i 0.63*** 
4.87 ± 0.43^ 

1.63 i 0.08*** 
1.42 ± 0.10* 
2.25 i 0.41*** 
6.10 ± 1.20® 

2.66 i 0.60*** 

3.45 i 0 81** 
4.58 i 1.02*** 
6.21 ± 1.22** 

LEFT VAGOTOMY 

Room Air I.10 ± 0.20 0.85 i 0.17 1.35 ± 0.09** 

RIGHT VAGOTOMY 
Room Air 0.87 ± 0.09 3.09 ± 0.12* 3.30 ± 0.92* 

BILATERAL VAGOTOMY 

Room Air 
Hypoxia 
Hyporoxia 

DIff. Vent. 

1.03 i 0.02 
1.01 ± 0.078 
0.99 ± 0.04 
1.01 + 0.07 

1.02 1 0.03 
1.01 ±0.11 
1.02 i 0.16 
0.96 i 0.09 

0.93 ± 0.06 
0.96 ± 0.03* 
1.06 + 0.05 

0.89 i 0.02 

^Values represent Mean i SO of the ratio ^xox^^^tOT Indicate reflex strength of the HorIng-Qreuer 
Inspiratory-Inhibiting activity. Ratios which are significantly different from 1.0 are Indicated by: *P < 0.05, 
**P < 0.01, ***P < 0.001. 

pattoj^n control. 

A significant ratio Implies the presence of reflex alterations In respiratory 

0.1052. 
0,0742. 
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Figure 29. Hering-Breuer Inspiratory Inhibition produced by unilateral airway occlusion at peak 
inspiration is more pronounced for right lung occlusion than for left lung maneuvers. 

Traces represent airflow, tidal volume and airway pressure (P.y) of the left and 
right lung, esophageal pressure (Pgc) and right ventricular pressure (RVP). 
Inspiration produces downward deflections on respiratory recordings. Onset (arrow) 
and duration of occlusion (heavy black line) are indicated on the time trace. One or 
two normal breaths precede occlusion at end-inspiration of the left lung (LLO-EI) and 
right lung (RLO-EI). Such maneuvers produce an apneic period of ca. 2 sec for LLO-EI 
and ca. 8 sec for RLO-EI. These values indicate strength of the reflex response to 
sustained vagal volume feedback. 
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occlusion under these conditions was not significantly different from 

unilateral left lung occlusion at peak inspiration. 

After correcting for minute ventilation dependency, the order 

of reflex strength generally remained as before: hypoxia < normoxia 

< hyperoxia with differential ventilation appearing to be strongest, 

although the variation among animals was considerable. It is 

noteworthy that the apneic response to RLO-EI was longer during 

hypoxic, hyperoxic and differential lung ventilation than that 

present during room air breathing. 

The inspiratory-inhibitory reflexes whether induced by 

unilateral or bilateral occlusions and regardless of inspired oxygen 

tension were abolished by bilateral vagotomy, i.e. Tjgj^/T-j-Qj was 

not significantly different from 1.0. 

The results of unilateral vagotomy are somewhat consistent with 

the idea of ipsilateral vagal innervation. The reflex apneic 

responses to left lung occlusion with left vagotomy and right lung 

occlusion with right vagotomy were abolished. In fact, the occluded 

cycle was actually shorter (increased instantaneous breathing 

frequency) than the preceding control cycle when the lung 

ipsilateral to the vagotomy was restricted. This might be explained 

by afferent activity from the contralateral lung whose vagal 

innervation was still intact. Unilateral occlusion at peak 

inspiration of the lung contralateral to the vagotomy had a strength 

ratio greater than one. It should be noted that left lung occlusion 

apnea with the right vagus cut was significantly (P < 0.05) longer 
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than the apneic response to LLO-EI with vagi intact (TyQy°/TyQy 3.09 

± 0.12 and 1.63 ± 0.08 respectively). For bilateral occlusions, 

reflex apnea was generally longer in the right vagotomized than the 

left vagotomized animals ~ 3*30 ± 0.92 and 1.35 + 0.09 

respectively). 

First effort breaths 

Unilateral and bilateral airway occlusions in 38 vagally intact 

dogs whether set at end-expiration or end-inspiration significantly 

(P < 0.05) prolonged Tj of the first effort (Figure 30, Table A-6), 

the effect being slightly more pronounced for occlusions set at peak 

inspiration. The change in Tj (+0.10 to +0.30 sec) was similar for 

left and right unilateral occlusions, but significantly (P < 0.05) 

less than Tj prolongation (+0.53 to +0.81 sec) of first effort 

breaths against bilateral occlusions. Quantitatively similar 

results were obtained during hypoxic, hyperoxic and differential 

lung ventilation. However, since Tj of control breaths during 

hypoxia (0.84 + 0.06 sec) was significantly shorter than Tj of 

control breaths during room air ventilation (1.20 ± 0.11 sec), the 

relative prolongation of first inspiratory efforts was actually 

greatest during ventilation with 10% oxygen. 

During left, right and bilateral airway occlusions, expiratory 

duration of the first effort was generally prolonged (Figure 31, 

Table A-7). The magnitude of prolongation varied considerably among 

the four gases tested. However, for a given gas, lengthening of Tg 
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Figure 30. Effects of inspired oxygen tension on reflex prolongation 
of inspiratory time during first effort breaths against 
specific airway occlusions. 

The change in inspiratory time ( Tj) plotted on the 
vertical axis represents the difference between Tj of the 
first respiratory effort against airway occlusion and Tj 
of the preceding control breathing. The specific type of 
airway occlusion maneuver is indicated on the horizontal 
axis (refer to ABBREVIATIONS). Each maneuver was 
evaluated during inhalation of 4 different test gases 
which are represented by the shaded bars. A significant 
change in Tt is indicated by: *P < 0.05, **P < 0.01 and 
***P < o.ool. 
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Figure 31. Effects of inspired oxygen tension on reflex prolongation 
of expiratory time during first effort breaths against 
specific airway occlusions. 

The difference between expiratory duration of the first 
respiratory effort against airway occlusion and expiratory 
duration of the preceding unloaded control breath is 
represented on the vertical axis as aT^. The specific 
type of occlusion maneuver is shown along the horizontal 
axis (refer to ABBREVIATIONS). Shaded bars represent the 
test gas condition during occlusion maneuvers. *P < 0.05, 

< 0.01 and ***P < 0.001 designate a significant ATg 
due to occlusion. 
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was significantly (P < 0.05) greater for occlusions set at EI as 

compared to first efforts against EE occlusions. This was true for 

right, left and bilateral occlusion maneuvers. 

Inspiratory duration of first effort breaths against unilateral 

airway occlusion was not significantly different from Tj of the 

preceding control breath during room air breathing after bilateral 

vagotomy. However, BVX did not eliminate Tj prolongation of first 

efforts against bilateral airway occlusions. This was generally 

true of occlusions set during hypoxic, hyperoxic and differential 

ventilation in dogs with BVX (Figure 32, Table A6 ). Unilateral 

vagotomy abolished the change in Tj during first efforts against 

occlusion of the ipsilateral lung. However, bilateral airway 

occlusions still produced significant prolongation of Tj with only 

one vagi intact. 

Bilateral vagotomy eliminated the reflex prolongation of T^ 

during first effort breaths against all six occlusion maneuvers 

during inhalation of room air, 10% O2, 100% O2 and the 100% 02:100% 

Ng supplied unilaterally (Figure 33, Appendix A7). Right lung 

occlusions produced significant lengthening of T^ while left lung 

maneuvers produced significant shortening of Tg in LVX dogs. First 

effort breaths in RVX dogs were significantly prolonged during LLO-

EI and BLO-EI maneuvers. 

The overall results of these changes in inspiratory and 

expiratory durations during specific airway occlusions are 

summarized in Table 10 (refer also to Table A8 ). Ratios of first 
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Figure 32. Effects of vagotomy on reflex prolongation of respiratory 
time during first effort breaths against specific airway 
occlusions. 

Change in inspiratory time (ATj) represents the difference 
between Tj of the first respiratory effort against 
occlusion and Tj of the preceding unloaded control 
breath. The type of airway occlusion maneuver is 
indicated on the horizontal axis (refer to 
ABBREVIATIONS). Maneuvers were performed in intact and 
vagotomized conditions as represented by the shaded bars. 
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Figure 33. Effects of vagotomy on reflex prolongation of expiratory 
time during first effort breaths against specific airway 
occlusions. 

Change in expiratory duration (aTc) represents the 
difference between of the first respiratory effort 
against airway occlusion and Tg of the preceding unloaded 
control breath. The type of airway occlusion is indicated 
on the horizontal axis (refer to ABBREVIATIONS). 
Maneuvers were performed in intact and vagotomized 
conditions as represented by the shaded bars. 
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Table 10. Occlusion Induced changos In Instantanoous broathlng froquoncy and phaso-switching Index 

Expurlmontal Condition 

and Occlusion Type^ 

^ol'/^tot V'l 

Room Air-Intact 3.26 4 0.08 
RLO-EE 
RLO-EI 
LLO-EE 
LLO-EI 
nio-EE 
niO-EI 

1.03 i 0.09" 
1.32 1 0.03*** 
1.08 t 0.06 
1.12 ± 0.02"" 
1.21 i 0.14 
1.24 + 0.11 

2.93 i 0.19* 
3.58 i 0.21* 
3.25 i 0.25* 
3.02 ± 0.14* 

1.97 ± 0.11*** 
2.40 i 0.12** 

llypoxla-lntact 1.65 +0.11 
RLO-EE 
RLO-EI 
LLO-EE 
LLO-EI 
DLO-EE 
BLO-EI 

1.10 + 0.03* 

1.35 + 0.09" 
1.08 + 0.04** 
1.33 + 0.16** 
1.20 + 0.03** 
1.67 + 0.20*** 

1.28 + 0.19** 
1.90 + 0.23* 
1.59 + 0.16 
1.92 i 0.22* 
0.89 ± 0.14* 
1.70 + 0.23 

llyporoxla-lntact 3.83 ± 0.28 
RLO-EE 

RLO-EI 
LLO-EE 
LLO-EI 
BLO-EE 
BLO-EI 

1.24 + 0.06* 

1,53 + 0.99* 

1.06 i 0.10 
1.32 + 0.10*** 

1.58 + 0.26* 

2.13 1 0.29*** 

3.57 + 0.55* 
4.61 + 0.69** 

3.07 ± 0.51* 
3.44 + 0.38* 

2.78 + 0.56** 
4.76 + 0.49*** 

DIff. Vont.-Intact 
RLO-EE 
RLO-E I 
RLO-EE 

1. 11 + 0.03* 
1 . 2 0  + 0 . 1 1  

1.20 + 0.04* 

1.96 + 0.13** 
2.32 + 0.18 
1.92 + 0.09** 

2.27 + 0.36 
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LLO-t I 
DLO-EE 
DLO-E I 

Room Alr-LVX 
RLO-EE 
RLO-EI 
LLO-EE 
LLO-EI 
BLO-EE 
DLO-EI 

Room Alr-RVX 

RLO-EE 

RLO-EI 

LLO-EE 
LLO-EI 
DLO-EE 
DLO-EI 

Room Alr-DVX 

RLO-EE 
RLO-EI 
LLO-EE 
LLO-EI 
BLO-EE 
DLO-EI 

"Refer to ABBREVIATIONS. 

1.52 i 0.13**" 
1.30 ± 0.19*** 
1.03 + 0.31*** 

1.44 ± 0.16* 
1.30 0.09** 
0.80 + 0.21 
0.89 i 0.10 
1.10 ± 0.05 
1.10 ± 0.01* 

2.99 > 0.19** 

1.54 ± 0.09*** 
3.04 ± 0.36*** 

3.14 ± 0.34 
3.71 i 0.60* 
3.23 i 0.49 
2.54 + 0.41*** 

2.62 ± 0.33** 
2.43 i 0.35*** 
2,37 ± 0.23*** 

2.40 ± 0.22 
I.OI ± 0.02 1.38 i 0.03*** 
0.94 ± 0.09 1.34 i 0.03*** 
1.27 i 0.11* 1.32 i 0.03*** 
2.78 + 0.42** 3.94 t 1.43*** 
1.36 ± 0.36 1.46 ± 0.15*** 
2.04 + 0.28* 2.63 i 0.44* 

1.01 + 0.04 
0.94 + 0.01 
1.00 + 0.02 
0.90 + 0.00 
0.95 + 0.09 
0.96 ± 0.03 

1.90 i 0.09 
1.73 i 0.13* 
1.60 i 0.09** 
1.73 ± 0.00* 
1.95 i 0.00 
1.47 i 0.04** 
1.35 i 0.11*** 

^Values roprosont Moan + SD. Changes In the phase switching T^/T Index or In tho ratio comparing total cycle 
duration of first effort breaths, when significantly different from 1.0 are Indicated as: *P < 0.05, **P < 0.01 and 
**«P < 0.001. 
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effort total cycle duration versus total cycle duration of the 

preceding control breaths are used to correct for the range of 

ventilations measured during test gas and vagotomized conditions. 

The Tg/Tj ratios (phase-switching indices) represent central 

interpretation of vagal volume feedback and extravagal (chest and 

diaphragm distension) influences. 

Bilateral vagotomy completely abolished the decrease in 

instantaneous breathing frequency (l/Tjgj) of first breaths, i.e., 

TJQJVTJOJ IS not significantly different from 1.0 for any 

maneuver. Unilateral vagotomy abolished the frequency response to 

ipsilateral occlusions (both EE and EI), but produced more marked 

slowing of respiratory rate during occlusion of the contralateral 

lung. 

Changes in the Tc/Tj ratio suggest that extravagal afferent 

input is an integral part of respiratory control. No apparent 

relationship exists between the change in breathing frequency 

induced by airway occlusion and the change in the Tg/T^ phase-

switching index. This disparity argues against the notion that 

mechanisms controlling Tj also mediate the duration of expiration. 

The tendency for the respiratory system to withstand changes in 

tidal volume in the presence of changing respiratory loads is 

defined as ventilatory stability (Lynne-Davies et al., 1971; Mead, 

1966). Ventilatory stability was analyzed in terms of instantaneous 

minute ventilation and tidal volume of first effort breaths during 

unilateral airway occlusion (Table 11). Obviously, bilateral 
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Table II. Respiratory compensation to unilateral airway occlusions measured In terms of minute volume and tidal 
volume of first effort breatlis. 

Experimental Condition and Type of Occlusion® Vg*/Vg 

Room Air-Intact 

RLO-EE 0.65 ± o
 

o
 

0.62 ± 0.02 
RLO-EI 0.51 ± 0.02 0.64 + 0.01 
LLC-EE 0.74 ± 0.04 . 0.77 ± 0.02 
LLO-EI 0.72 ± 0.03 0.81 ± 0.02 

Hypoxia-Intact 
RLO-EE 0.55 i 0.03 0.59 i 0.06 
RLO-E1 0.51 + 0.04 0.66 ± 0.08 
LLC-EE 0.67 i 0.02 0.73 ± 0.04 
LLO-EI 0.59 + 0.05 0.78 ± 0.03 

llyperoxla-lntact 
RLO-EE 0.50 + 0.02 0.61 + 0.05 
RLO-EI 0.44 0.04 0.69 + 0.03 
LLC-EE 0.71 + 0.06 0.76 ± 0.06 
LLO-EI 0.61 + 0.05 0.79 + 0.09 

DIff. Vent.-Intact 

RLO-EE 0.52 + 0.02 0.58 + 0.02 
RLO-EI 0.53 i 0.06 0.63 + 0.04 
LLO-EE 0.68 i 0.03 0.75 ± 0.03 
LLC-El 0.59 ± 0.09 0.88 1 0.06 
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Room Alr-LVX 

RLO-EE 0.61 ± 0.00 0.79 ± 0.05 
RLO-El 0.62 ± 0.06 0.75 ± 0.04 
LLC-EE 0.95 ± 0.08 0.00 i 0.03 
LLO-EI 0.60 ± 0.06 0.76 ± 0.05 

Room Alr-RVX 0.41 i 0.14 0.40 i 0.13 
RLO-El 0.59 + 0.01 0.56 ± 0.02 

LLO-EE 0.63 + 0.00 0.80 4 0.05 
LLO-E1 0.42 ± 0.08 0.98 1 0.12 

Room Alr-BVX 
RLO-EE 0.52 + 0.03 0.52 i 0.02 
RLO-El 0.46 ± 0.04 0.43 i 0.02 
LLO-EE 0.64 + 0.00 0.69 > 0.02 
LLO-EI 0.62 + 0.01 0.60 + 0.03 

®Rofor to ABBREVIATIONS, 

^Values reprosont Muan + SEM of minute ventilation and tidal volume of first effort breaths expressed In 

terms of the preceding values measured during the control breaths. Keep In mind that both values are obtained 

from the lung contralateral to the occlusion. 
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maneuvers are excluded from this type of evaluation since no volume 

changes occur. For the same reason, it should be apparent that 

ventilatory stability is accomplished by the lung contralateral to 

the occlusion. 

During room air breathing in intact dogs first effort 

inspirations against RLO-EE and RLO-EI were terminated at volumes 

approximating 63% of the preceding control breaths. Corresponding 

left lung occlusions under these conditions were terminated at 

volumes of 11% and 81% for EE and EI occlusions respectively. Since 

leftrright lung volume distribution was about 40:60 %, it can be 

seen that left lung volume expansion (from 40% to 63%) is 

approximately equal to right lung volume expansion (from 60% to ca. 

79%). However, since the absolute volume inspired by the left lung 

is less than that inspired by the right lung, minute ventilation is 

better preserved during left lung occlusions. This latter 

observation argues against the idea that volume dependent phasic PSR 

activity is solely responsible for determining inspiratory duration 

since prolongation of Tj was comparable for left and right 

unilateral occlusions (Figure 30). These results further 

demonstrate that the relationship between mean ventilation and tidal 

volume (Hey et al., 1966) was less well-preserved during occluded 

efforts. This observation is particularly important since it could 

imply that mechanisms involved in reflex responses to airway 

occlusions are not necessarily identical to those which operate in 

normal pattern control of spontaneous unoccluded breathing. 



www.manaraa.com

153 

Minute ventilation and tidal volume were less well-preserved in 

vagotomized dogs. First effort inspirations were terminated at 

lower lung volumes during EI occlusions than during the 

corresponding EE occlusions for both left and right lung 

responses. These results are exactly opposite those observed in 

intact dogs during inhalation of all four test gases. 

The immediate ventilatory stability of the breathing pattern 

control mechanisms in the presence of airway occlusion is partially 

dependent upon the elastance of the respiratory system (Milic-Emili 

and Pengelly, 1971; Pengelly et al., 1971). Two different 

techniques were used to measure left and right lung elastance (Table 

12). Dynamic elastance (Ejy^) was obtained from airway pressure and 

tidal volume traces during unoccluded control breaths at point of 

zero flow. Quasi-static measurements of elastance (E^^) for both 

lungs were obtained by dividing the value of the apneic pressure 

plateau with the respective volume held in the lungs during EI 

occlusion maneuvers. Measurements of dynamic elastance were 

significantly lower than quasi-static estimates. Quasi-static 

measurements are very similar to values reported by Seed and Sykes 

(1972) although their mesurements were expressed as passive 

compliance, i.e., the inverse of elastance. The difference between 

Ejyn 2nd E^^ is indicative of the increase in lung recoil developed 

by the distended or occluded lung. Dynamic elastance of the right 

lung was generally lower than that measured in the left lung. In 

contrast, quasi-static elastic recoil of the occluded left lung was 
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Table 12. Passive dynamic and quasi-static moasuromonts of left and right lung olastance 

Experimental Condition Right Lung Loft Lung 

and Typo of Occlusion® E^^ E^^^ 

Room Air-Intact 
RLO-EI 7.3 i 0.5^ 29.5 +4.1 
LLO-EI — — 7.0 i 0.4 54.3 + 6.2 
QLO-EI 6.6 + 0.4 61,0 i 8.2 7.0 + 0.3 36.4 + 3.0 

Ifypoxla-lntact 
RLO-EI 9.9 ± 0.0 33.0 +5.1 
LLO-EI — — 8.4 + 0.5 49.7 + 6.2 
BLO-EI 9.7+0.8 54.0+4.6 8.4+0.4 41.5+5.2 

llyporoxla-lntact 
RLO-EI 10.2+0.1 25.3+4.7 

LLO-EI — — 8.3 + 0.7 49.3 + 3.3 
BLO-EI 10.0+0.1 47.6+7.7 7.7+0.7 28.2+4.1 

D I f f .  V e n t . - I n t a c t  
RLO-EI 10.0 1 0.1 26.8 + 2.3 
LLO-EI — — 7.7 ± 0.8 46.7 + 5.5 
BLO-EI 9.1+0.9 49.7+3.9 7.0+0.5 28.7 + 3.8 
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Room ALr-LVX 
RLO-EI 
LLO-EI 
BLO-EI 

Room Alr-RVX 
RLO-EI 
LLO-EI 
BLO-EI 

Room Alr-BVX 
RLO-EI 
LLO-EI 
BLO-EI 

5.6 i 0.4 

5.3 i 0.4 

0.2 i 0.0 

7.5 + 0.6 

5.2 + 0.0 

5.4 t 0.6 

34.2 i 5.0 

74.0 i 9.4 

36.9 + 6.6 

47.2 i 3.7 

22.8 i 2.1 

33.9 t 4.0 

6.3 + 0.8 

5.3 i 0.3 

6.9 ± 0.0 
6.9 i 0.0 

5.6 ± 0.1 
6.5 + 0.6 

60.2 ± 8.9 

50.0 ± 7.1 

40.6 i 6.8 
42.9 i 5.3 

35.8 ± 3.9 
2 3 . 8  ±  4 . 1  

®Rofer to ABBREVIATIONS. 

\aluos reprosont moan + SO for passlvo dynamic olastanco (E. ) and quasi-static olastanco (E ) oxprossod as 
cm llgO/L. 
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always greater than the recoil of the occluded right lung during 

unilateral maneuvers. These differences may reflect the fact that 

dogs have an incomplete separation of the left and right thoracic 

cavity such that compression of one lung by the other is common. 

However, during bilateral maneuvers, right lung quasi-static recoil 

was much greater than left lung quasi-static recoil. Unilateral 

predominance is evidenced by the reduced after left and 

bilateral vagotomy and elevated after right vagotomy. Changes 

in passive elastance following vagotomy probably reflect elimination 

of tonic vagally mediated bronchomotor tone. 

Effect of F2O2 and Vagotomy on Respiratory Center Output 

Average values for rate of change in airway pressure and peak 

airway pressure during first effort inspirations of BLO-EE maneuvers 

are presented in Table 13. Since there is negligible change in lung 

volume, rate of change of inspiratory airway pressure during BLO-EE 

maneuvers in intact dogs breathing room air represents the intensity 

of phrenic motor output in the absence of phasic PSR activity. 

These values averaged 7.61 ± 0.96 and 7.45 ± 0.89 cm H^O/sec for the 

right and left lung respectively. It follows that peak inspiratory 

airway pressures were also similar in the right (12.48 ± 0.05 cm 

H2O) and left lungs (12.12 ± 0.51 cm H^O). 

Hypoxia increased both the rate of rise and peak inspiratory 

airway pressure (P^^p. The effects were significantly more 

pronounced for the right lung. Even more discordant values between 
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Table 13. Indirect assessment of respiratory center output obtained from airway pressure measurements during 
first effort Inspirations of end-expiratory lung occlusion. 

Experimental Condition® Right Lung Loft Lung 

Intact 
Room Air 12.48 + 0.05® 7.61 + 0.96 12.12 + 0,51 7.45 + 0.89 
Hypoxia 15.67 + 2.00 9.50 ± 0.02 12.68 + 1,19 7.66 + 0.91 
Hyperoxia 13.83 + 1.41 9.11 + 1.24 10.19 + 0.96 7.13 + 1.39 
D I f f ,  V e n t .  13.44 0.62 7.76 + 1.03 9.99 + 1,10 5.91 + 1.08 

Room Air 11.20 + 0.31 6.85 + 0.53 12.37 + 0,72 7.54 + 0.69 

Room Air 14.65 + 2.04 7.07 + 0.62 10.35 + 2.41 6.46 + 1.12 

Room Air 13.27 + 0.07 7.88 + 0.42 9.92 + 0.06 5.47 + 0,29 

®Ro(er to ABBREVIATIONS. 

^Values represent Mean + SO of peak airway pressure and rate of change of airway pressure during 
f i r s t  e f f o r t  I n s p i r a t i o n s  a g a i n s t  b l l a t e r a l  o c c l u s i o n  a t  e n d - e x p l r a t l o n  a s  I n d i c a t e d  b y  t h e  p r i m e  s u p e r s c r i p t .  
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the right and left lung were obtained during bilateral hyperoxia 

when end-tidal gases of the two sides were nearly identical. 

Inhalation of 100% oxygen produced an increase in peak pressure and 

rate of change of pressure in the right lung (+11% and +20% rate 

of rise compared to simultaneously measured decreases in left 

lung values (-16% and -4% rate of rise P^w)* 
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DISCUSSION 

Several lines of evidence in the present study support the 

hypothesis that elements which 'sense' changes in the concentration 

of alveolar oxygen participate in breathing pattern control. The 

first of these was the observation that dogs responded to 

differential ventilation (DV: left lung hypoxic, right lung 

hyperoxic) with a significant increase in minute volume. 

Characteristics of the ventilatory response to DV were similar to 

those associated with hypoxic hypoxemia. However, normoxemia was 

established during DV by adjusting FjOg of the right lung. As such, 

the ventilatory drive during DV could not be accounted for by 

peripheral chemoreceptor input. Furthermore, since special efforts 

were made to maintain end-tidal CO2 of each lung isocapneic 

throughout the course of these experiments, the ventilatory response 

to DV could not be attributed to stimulation of central CO2 

chemoreceptors or to the C02-pulmonary reflex (Mustafa and Purves, 

1972; Bartoli et al., 1974; Banzett et al., 1978). 

Several possible mechanisms could account for alterations in 

the breathing pattern during differential ventilation. Among these 

are included: 1) an effect of alveolar oxygen on pulmonary stretch 

receptor (PSR) discharge or on other pulmonary vagal endings, 2) 

widening of the A-aOO^ gradient with subsequent mismatch of 

peripheral chemoreceptor and intrapulmonary afferent activity 

coursing to the brainstem, 3) hypoxic or hyperoxic-induced release 



www.manaraa.com

160 

of humoral factors which act on the bulbopontine respiratory 

mechansisrns, 4) the cardiopulmonary baroreflex, and 5) other unknown 

mechanisms. 

Qualitative aspects of the Hering-Breuer reflexes mediated by 

airway stretch receptors with vagal afferent projections to the 

bulbopontine respiratory center(s) are quite well-known. 

Stimulation of the whole vagal bundle has been used to investigate 

the mechanisms of central respiratory integration (Stanley et al., 

1975; Bradley, 1976; Trenchard, 1977). However, since a number of 

afferents which produce quite different respiratory patterns are 

carried in the vagus, results of these studies may be misleading. 

Many of the ambiguities encountered in studying respiratory reflexes 

can be minimized by using more physiologic stimulation of vagal 

afferents such as is produced by changes in lung volume. 

The effect of selectively eliminating (partially or completely) 

phasic PSR activity on the breathing pattern was examined in the 

present study by occluding one or both airways at end-expiration 

(EE). During the first breathing effort against these occlusions 

there is no change in lung volume of the occluded side(s) and thus 

no phasic PSR activity (Richardson et al., 1973) Occlusions set at 

peak inspiration (EI) were used to examine the effect of increased 

lung volume and thus increased tonic PSR activity on the respiratory 

pattern. As with EE maneuvers, respiratory efforts against airways 

occluded at EI were not associated with volume changes and thus 

phasic PSR activity was negligible. Changes in pressures, airflows. 
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volumes and timing of the occluded breaths were used to assess the 

contribution of phasic and tonic PSR input to respiratory pattern 

control. 

The approach used to determine whether it was the alveolar 

hyperoxia or the alveolar hypoxia which was responsible for the 

ventilatory response to DV was to compare reflex respiratory 

responses to specific airway occlusions over a range of inspired 

oxygen tensions. To examine the role of arterial versus alveolar 

oxygen tension on lung volume reflexes and the drive to breathe, the 

dogs were fitted with an endobronchial divider. The double-lumen 

endobronchial divider enabled the left lung to breathe 100% nitrogen 

(i.e., an alveolar hypoxic stimulus) while the right lung breathed 

90-100% oxygen (i.e., an alveolar hyperoxic stimulus). Differential 

ventilation was used as a non-invasive means of establishing 

systemic normoxemia and thereby prevent loading and unloading of 

peripheral chemoreceptors. Such loading was present when dogs were 

exposed to bilateral hypoxia [^1^2 ~ C-l) and bilateral hyperoxia 

(F1O2 = 1.0). Hypoxia and hyperoxia, together with bilateral 

nonnoxia {^1^2 - 0.2) were used to produce parallel changes in 

arterial and alveolar oxygen tensions with a range of AaD02 

gradients. Reflex respiratory responses to airway occlusion 

maneuvers and the steady breathing patterns in these situations are 

determined by interactions among bronchopulmonary mechanoreceptors 

and intra- and extrapulmonary oxygen chemoreceptors. By looking 

specifically at the right and left lung contributions to total lung 
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reflex repenses to airway occlusions during these interventions, 

evidence was obtained for the presence of intrapulmonary 

chemoreceptor mechanisms. 

A prerequisite for this approach was to define the 

relationships among respiratory responses to left, right and 

bilateral lung occlusions. Systematic analysis of the interaction 

between left and right lungs during the well-known respiratory 

responses to tracheal occlusions had not been previously 

undertaken. These experiments have provided important data 

regarding the present assumptions concerning phasic and tonic PSR 

influence on control of respiratory cycle timing. 

Application of a positive pressure at the mouth either by 

forced inflation or by occluding the airways at peak inspiration 

(these experiments) results in a period of apnea. The duration of 

the apnea has traditionally been attributed to phasic PSR activity 

and been used as an index of the strength of the vagal inspiratory 

inhibitory reflex. This Hering-Breuer reflex is thought to be 

responsible for, or at least contribute to, control of respiratory 

frequency and tidal volume during spontaneous breathing. 

During room air, breathing, the reflex apnea following RLO-EI 

was always longer than that produced by LLO-EI. Furthermore, the 

apneic response to BLO-EI was always longer than the summation of 

apneic responses produced by unilateral occlusions. Identical 

results were obtained during hypoxia (10% O2) and hyperoxia (100% 

O2), although the differences between apneic responses were greatly 
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magnified. These results are consistent with the idea that volume-

dependent PSR activity underlies this Hering-Breuer apnea. However, 

the data for apneic durations also suggest that central integration 

of vagal activity is not additive and that pulmonary vagal 

innervation may not be completely ipsilateral. Evidence for the 

latter is provided by the exaggerated apneic response to BLO-EI 

maneuvers in unilaterally vagotomized animals. 

The disparity between these results obtained during normoxia, 

hypoxia and hyperoxia with those obtained during DV offers strong 

evidence for the hypothesis that alveolar O2 tension participates in 

breathing pattern control. EI occlusion of the left hypoxic lung 

(smaller Vj) produced a significantly longer apneic response than EI 

occlusion of the right hyperoxic lung (larger Vj). Furthermore, the 

apneic duration of BLO-EI maneuvers during differential ventilation 

was significantly shorter than would be predicted from summation of 

the apneic durations produced by RLO-EI and LLO-EI. These results 

suggest that alveolar hypoxia sensitizes PSR's such that receptor 

discharge per unit change in lung volume is increased. In other 

words, PSR discharge at the time of LLO-EI would be greater during 

DV than during room air breathing. However, a direct effect of 

hypoxia in altering the gain of PSR discharge does not explain why 

the apneic response to RLO-EI during DV was so much longer than that 

produced by the same maneuver during normoxia. 

It is now recognized that factors other than PSR activity 

participate in the inhibition and recovery of phrenic activity 
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during these maneuvers. The relationship between apneic duration 

and arterial oxygen tension in the present study is in accord with 

previous studies (Younes, 1974). These results suggest that phrenic 

output represents central interpretation of the chemical excitatory 

drive to breath and vagal inhibitory influence on this drive. 

However, chemical excitation alone cannot account for recovery of 

phrenic activity. Timing of the second and third efforts during 

occlusion was not significantly different from that measured during 

the first effort, although the chemical drive to breathe was 

continually increasing as evidenced by values of end-tidal pCOg. 

However, it should be recognized that mechanisms which determine the 

apneic duration may not be identical to those which dictate 

respiratory cycle characteristics of subsequent efforts against 

occluded airways. Other factors thought to be involved in 

determining the duration of apnea include PSR adaptation and 

proprioceptive afferent activity arising from the chest wall and 

diaphragm. A hyperoxic induced decrease in the rate of PSR 

adaptation duration a sustained increase in lung volume could 

explain the long apnea produced by RLO-EI in differentially 

ventilated dogs. 

Reflex respiratory respones to total airway occlusion at 

functional residual capacity (PRC) in the present study (BLO-EE 

maneuvers) were similar to those reported for conscious dogs 

(Phillipson, 1974). First effort breaths against such occlusions 

are characterized by prolongation of Tj, Tg, and Tjgj. With the 
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exception of a decrease in Tg for BLO-EE during hypoxia, 

qualitatively similar responses were obtained for all four gases 

tested. These changes theoretically represent the immediate 

reaction of the respiratory center(s) to withdrawal of phasic PSR 

activity (Head, 1889). Conventional theory states that a change in 

lung volume stimulates PSR's and that phasic PSR discharge, together 

with central inspiratory activity (CIA), determines Tj (Breuer, 

1868; Hering, 1868, Adrian, 1933; Clark and von Euler, 1972). As 

stated, the effect of BLO-EE is to eliminate the normal rate of rise 

of phasic vagal discharge from PSR's in the occluded lung(s). This 

prolongs inspiration by delaying the time required to reach the 

inhibitory-off switch (I-OS) threshold. Prolongation of Tj during 

BLO-EE maneuvers in the present study was not related to pa02. 

However, since Tj of the control breath preceding occlusion was 

shortest during hypoxia and longest during DV, reflex prolongation 

of Tj was relatively greatest during hypoxic hypoxemia and least 

during DV normoxemia. These results suggest that hypoxemia 

sensitizes pulmonary stretch receptors. An increase in the gain of 

PSR discharge would explain the short Tj of unoccluded breaths and 

the relatively long Tj of occluded breaths in the hypoxic dogs. 

Sensitization of PSR by hypoxia and conversely, desensitization by 

hyperoxia, does not fully explain the respiratory response to BLO-EE 

during differential ventilation. 

Changes in Tr of first effort breaths against BLO-EE were 

associated with pa02 during hypoxia, normoxia and hyperoxia. These 
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results are consistent with the report by Koepchen et al. (1973) 

that stimulation of peripheral chemoreceptor afferents excite 

expiratory neurons independently of their action on inspiratory 

neurons. However, BLO-EE maneuvers during DV produced 

prolongation which was much greater than that observed during 

normoxia. These results support the hypothesis that Fj02 

contributes to control of respiration by an effect on intrapulmonary 

chemoreceptors. This effect, being manifested primarily as changes 

in Tg, further suggests that intrapulmonary oxygen 'sensing' 

mechanisms may involve tonic PSR discharge. 

Alterations in tonic PSR activity, and thus Tg, may be 

secondary to changes in functional residual capacity reported to 

occur during hypoxia and hyperoxia (Bouverot and Fitzgerald, 

1969). The increased PRC during hypoxia would tend to increase 

tonic PSR firing while the decrease in PRC during hyperoxia would 

reduce the level of PSR firing. The decrease in T^ during hypoxic 

BLO-EE maneuvers and the increase in Tg during hyperoxic BLO-EE 

maneuvers are exactly opposite those which would be predicted if the 

PRC changes had occurred. Furthermore, repeated breathing efforts 

against closed airways during test gas breathing in the present 

experiments would tend to minimize alveolar collapse and/or 

increases in closing volume of the recumbent anesthetized dogs. 

It has been proposed that mechanisms which determine Tj 

indirectly determine TJQJ and thus respiratory frequency by a time-

dependent relationship of Tg on Tj (Clark and von Euler, 1972; Nadel 
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et al., 1973). Stated in other words, changes in Tg will parallel 

changes in Tj (i.e., constant Tg/T; ratio) over a wide range of 

breathing frequencies. These conclusions are primarily based on 

data obtained from anesthetized, paralyzed cats rebreathing CO2. 

Results of the present study are inconsistent with the postulate 

that Tg is dependent upon Tj. Conflicting results may relate to 

species differences or the use of CO2 (discussion to follow). In 

the first instance, the distribution of respiratory frequencies in 

the present study during room air breathing for 38 vagally intact 

dogs was more closely associated with than with Tj. Secondly, 

the frequency changes associated with hypoxic, hyperoxic and 

differential lung ventilation were accompanied by significant 

changes in the T^/Tj ratio. More specifically, changes in 

respiratory rate were generally due to changes in expiratory 

duration; inspiratory duration remaining quite constant over a large 

range of frequencies. Thirdly, disproportionate changes in Tg and 

TJ, as well as assymetric alterations (changes in the opposite 

directions) in these variables were particularly apparent during 

respiratory responses to specific airway occlusions. 

Respiratory responses to airway occlusions set at peak 

inspiration (EI maneuvers) were used to assess the contribution of 

tonic PSR input on control of the breathing pattern. Theoretically, 

the increased volume in the lungs during EI maneuvers should present 

a higher tonic component of PSR vagal volume feedback to the I-OS. 

As such, inspirations should be shorter and expirations longer than 
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first efforts against EE maneuvers. Central interpretation of 

afferent information coursing to the CNS during breathing efforts 

against EI occlusion should be analogous to the pattern which ensues 

when FRC is increased for some other reason. It has been shown that 

breathing patterns at lung volumes above and below normal FRC are 

characteristically altered with respect to the steady state 

spontaneous breathing pattern at normal end-expiratory lung volume 

(Martin et al., 1978; D'Angelo and Agostoni, 1975). Bartoli et al. 

(1973) used anesthetized paralyzed dogs on closed-chest 

cardiopulmonary by-pass to change the tonic level of PSR activity by 

inflating and deflating the lungs in the absence of phasic activity 

(i.e., the animals were not making inspiratory movements). They 

demonstrated large changes in T^, but minimum changes in Tj. 

Similar results were obtained in the present study. Compared to EE 

occlusions, prolongation of expiratory duration was greater during 

EI maneuvers (i.e., increased end-expired lung volume -»• increased 

tonic PSR discharge longer Tg). However, prolongation of first 

effort Tj for a given lung occlusion (left, right, bilateral) was 

nearly identical whether the airways were restricted at end-

expiratory or peak-inspiratory lung volume. Consequently, the Tc/Tj 

ratios for first effort breaths were consistently higher for EI 

maneuvers. These experiments demonstrate that an increase in tonic 

PSR discharge (assumed during EI maneuvers) is capable of 

independently altering expiratory duration. 
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It is difficult to explain why the increase in tonic PSR 

activity has negligible effects on inspiratory duration during 

mechanically loaded breathing. Perhaps tonic PSR activity does 

facilitate inspiration, but that this effect is masked or 

counterbalanced by another inhibitory (i.e., Tj prolonging) input. 

Inhibitory signals arising from diaphragmatic and intercostal muscle 

spindles in response to large elastic loads (Corda et al., 1965; 

Bland et al., 1957) have been demonstrated to course directly 

(Remmers, 1973; Remmers et al., 1973) and indirectly (Shannon, 1980) 

to central respiratory neurons. The contribution of 'chest wall' 

mechanoreceptors to respiratory control has recently received a 

great deal of attention. 

The contribution by extravagal mechanoreceptors to breathing 

pattern control was evaluated in the present study by comparing EE 

to EI maneuvers as well as to steady state breathing patterns in 

vagotomized and intact dogs. Tj prolongation due to vagotomy 

averaged 79% while that due to BLO-EE averaged 17%. Similar values 

have been reported by Phillipson (1974) for conscious dogs breathing 

room air. By comparing Tj prolongation during first effort breaths 

of BLO-EE maneuvers with prolongation of Tj produced by bilateral 

vagotomy, it appears as if tonic PSR discharge does contribute to 

determining Tj during unoccluded breathing. The significance of 

this comparison is limited by the lack of information concerning the 

effect of the occlusion maneuver itself on central respiratory 

mechanisms. 
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Respiratory center output was assessed in the present study by 

measuring peak inspiratory airway pressure and rate of change of 

inspiratory airway pressure during first effort breaths of BLO-EE 

maneuvers. Rate of change of inspiratory airway pressure relates to 

central inspiratory activity and thus, phrenic output. Peak 

inspiratory airway pressure changes indicate alterations in the I-OS 

threshold. The degree of mismatch between directional changes in 

CIA and/or I-OS threshold determine whether Tj will increase, 

decrease or remain unchanged for a given PSR input. 

Bilateral vagotomy produced an increase in peak pressure and 

rate of change of inspiratory airway pressure during first effort 

breaths against BLO-EE. These changes most likely reflect the 

elimination of an inhibitory input to central respiratory mechanisms 

(Phillipson, 1974). If this is so, it follows that these same 

measurements taken during first effort breaths against BLO-EI 

maneuvers (i.e.,increased vagal feedback inhibition) in intact dogs 

should produce lower values compared to values obtained during BLO-

EE maneuvers. However, if peak pressure and rate of change of 

inspiratory pressure are affected by changes in chest wall 

configuration, the predicted responses would not occur. Data 

obtained in the present experiments indicate that respiratory center 

output is markedly higher during EI maneuvers than EE maneuvers even 

in bilaterally vagotomized dog. These results suggest that 

extravagal afferents alter respiratory center output. These 

afferents relay information concerning chest wall distension 
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associated with EI occlusions. Changes in respiratory output, 

together with the probability that chest wall impedance was higher 

during EI maneuvers (Mead, 1979), may explain why tidal volume was 

better preserved during EI than EE maneuvers. 

Until more is known about how the bulbopontine apparatus 

integrates afferent information and until all of the afferents to 

the respiratory center(s) are adequately evaluated, it is difficult 

to fully explain the significance or validity of pressure 

measurements as indicative of respiratory center motorneuronal 

output. 

Several lines of evidence in the present study suggest that 

output of the respiratory center(s) is not a result of simple 

summation of bilateral vagal input. Firstly, unilateral vagotomy 

(both left and right) decreased Tj and while bilateral vagotomy 

prolonged Tj and Tg. Secondly, bilateral vagotomy generally 

increased respiratory motor output as measured by peak pressure and 

rate of rise of inspiratory airway pressure during first effort 

breaths of BLO-EE maneuvers. In contract, left vagotomy produced a 

decrease in respiratory output estimated from these parameters while 

RVX generally increased output measurements. In conjunction with 

this data, summation of the apneic responses to RLO-EI and LLO-EI 

was approximately equal to that present during BLO-EI after RVX. 

However, after LVX, the apneic summation was significantly less than 

that produced by bilateral occlusion. These results are consistent 

with the hypothesis previously presented in this discussion 
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concerning non-additive interaction between bilateral vagal volume 

feedback. Further evidence supporting the hypothesis of non-

additive interaction is the observation that unilateral vagotomy had 

less effect on spontaneous unoccluded respiratory rhythm than on 

reflex respiratory responses to airway occlusions. Similar 

observations have been reported by Phillipson et al- (1971). These 

results also suggest that PSR impulses, which are thought to 

initiate the Hering-Breuer reflexes, may not be solely responsible 

for the vagal modulation of respiration. 

A major factor to consider in analyzing reflex responses to 

airway occlusion during hypoxia and hyperoxia is the central effect 

of O2' Central effects of hypoxemia during 10% Og breathing were 

manifested as increases in the rate of change of lung volume and 

airway pressure during inspiration. According to the Vj-Tj 

relationship (Clark and von Euler, 1972), inspiration should be 

terminated sooner at higher lung volume during hypoxemia. Tj was 

shorter during hypoxic hypoxemia in the present study. However, Vj 

remained constant suggesting that hypoxemia directly or indirectly 

(via chemoreceptor afferent activity) affects bulbopontine 

mechanisms by shifting the Vj-Tj relationship to the left. In 

direct contrast, carbon dioxide is reported not to affect or 

displace the relationship between tidal volume and inspiratory 

duration. The presence of a significant frequency response to 

changes in inspired oxygen in bilaterally vagotomized dogs in the 

present study is also in direct contrast to results reported during 
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hypercapnia. von Euler et al. (1970) reported that the increased 

frequency response to a wide range of chemical drives (all COg 

stimuli) was possible only when vagal circuits were intact. The 

differences between results of the present study with hypoxia and 

previous results with CO2 may lie in the actions of O2 on 

bulbopontine mechanisms, e.g. the I-OS threshold or rate of rise of 

CIA. 

Most of the previous studies designed to investigate 

respiratory control mechanisms have used COg to elicit ventilatory 

responses consisting of a range of tidal volume and frequency 

combinations. Animals or subjects are generally kept hyperoxic in 

an attempt to eliminate peripheral chemoreceptor input- The 

ventilatory patterns which ensue are assumed to result from central 

CO2 chemoreceptors and normal mechanical vagal volume feedback. It 

is now wel1-recognized that CO2 alters pulmonary stretch receptor 

discharge (Banzett et al., 1978). Furthermore, the present studies 

suggest that O2, directly and indirectly, may alter the 'set-point' 

of bulbopontine respiratory pattern control mechanisms. 

As stated, BVX did not affect the tachypneic response to 

hypoxia. However, following BVX, the ventilatory response to 

hypoxia was associated with an increase in tidal volume. An 

increased Vj associated with an increased respiratory rate in 

response to hypoxia in vagotomized dogs is consistent with the idea 

that hypoxia increases respiratory center output without increasing 

the I-OS threshold. Evidence that hypoxic hypoxemia increased the 
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rate of rise of CIA without altering the I-OS threshold is provided 

by the data showing an increase in rate of change of airway pressure 

without a concomitant increase in peak inspiratory airway 

pressure. Some direct evidence (Folgering and Smolders, 1979) from 

intracellular recordings supports this suggestion. These 

differences between Og and CO2 demonstrate the pervasive importance 

of controlling both O2 and CO2 in studies designed to investigate 

the neurochemical control of respiration. 

Reflex respiratory patterns elicited by mechanical loading, 

with and without additional chemical loading in the present study, 

support the hypothesis concerning intrapulmonary chemoreception of 

oxygen. Similarities during hypoxic hypoxemia and DV normoxemia for 

responses to specific airway occlusions as well as steady state 

breathing patterns imply that intrapulmonary and arterial O2 

chemoreceptors act synergistically. Several lines of evidence 

suggest that reflexly adjusts the ventilatory pattern by 

altering pulmonary stretch receptor activity. This explanation 

could explain the paradoxical ventilatory response to DV when pg02 

was actually slightly higher than during room air breathing. 

An alternative explanation may involve intrapulmonary 

baroreceptor stimulation. Hypoxic pulmonary vasoconstriction is a 

local response, being confined to the lung or lobe which is hypoxic 

(Himmelstein et al., 1958; Fishman, 1961). In fact. Hales and 

Kazemi (1974) measured a 37% decrease in perfusion of the nitrogen 

ventilated hypoxic lung in differentially ventilated dogs. It is 
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reasonable to expect that a similar redistribution of pulmonary 

blood flow occurred in dogs differentially ventilated in the present 

study. The animals were kept isocapneic throughout the entire 

course of this study. This eliminated direct CO2 and pH effects as 

well as C02-induced catecholamine release from altering the severity 

of hypoxic pulmonary vasoconstriction and subsequent shunting (von 

Euler and Liljestrand, 1958; Lloyd, 1966). Further evidence that 

shunting occurred in our dogs was suggested by the slightly 

increased mean pulmonary arterial pressure, right ventricular 

pressure and heart rate during differential ventilation. The less 

than expected pressor response to unilateral hypoxia might be 

explained by the idea that vasomotor activity within the 

hyperperfused hyperoxic right lung actually counteracted changes in 

mean pulmonary arterial resistance (Murray et al., 1969). 

In addition to baroreceptor involvement in the ventilatory 

response to differential ventilation, indirect stimulation of PSR's 

by the pulmonary pressor response might have occurred. An increase 

in right ventricular systolic pressure during DV could indicate 

pulmonary vascular obstruction or vasoconstriction has occurred. 

These hemodynamic alterations can stimulate pulmonary stretch 

receptors (Buibring and Whitteridge, 1945; Marshall and Widdicombe, 

1958). 

However, hyper- and hypoperfusion of the right and left lung 

respectively, may activate other intrapulmonary mechanisms which 

respond to small changes in oxygen tension. If such mechanisms do 
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exist, and if they mediate the ventilatory response to differential 

ventilation, it is unlikely that the afferent information courses in 

the vagus since the ventilatory response to DV was even more 

pronounced in BVX dogs. This latter observation precludes the 

possibility that PSR stimulation (either by increases in perfusion 

pressure or by changes in oxygen tension) or intrapulmonary 

baroreceptor activation are solely responsible for the steady state 

ventilatory patterns associated with differential ventilation. It 

is tenable that stimulation of intrapulmonary oxygen sensors causes 

release of humoral substances which alter respiratory center output 

and/or inspiratory threshold. As such, apparently normal sensory 

input becomes superimposed on different integrating mechanisms in 

the bulbopontine respiratory center(s). 

The present experiments were performed in intubated, 

anesthetized, spontaneously breathing dogs. Therefore, explanations 

of the results may not necessarily apply to respiratory rate and 

depth control in awake animals. However, occlusion data obtained 

from conscious dogs in similar studies by Phillipson (1974) were 

comparable to results presented in this report. 

While anesthesia does eliminate behavioral reactions to airway 

occlusions and changes in inspired Og tension, one must be careful 

in comparing the results of studies performed in animals 

anesthetized with different agents. Ventilation with low 

concentrations of trichloroethylene, ether, chloroform and halothane 

causes sensitization of pulmonary stretch receptors; higher 
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concentrations result in inhibition of PSR activity (Whitteridge and 

Bulbring, 1944; Paintal, 1957; Coleridge et al., 1968). For obvious 

reasons inhalant anesthetics are not appropriate in experiments 

designed to study mechanical lung volume reflexes- Similarly, the 

presence of general and specific depressant effects on central 

nervous system activity preclude the use of barbiturates in such 

studies. Alpha-chloral ose is usually the best anesthetic agent in 

neurophysiologic studies because reflex activity is better retained 

than during various forms of barbiturate anaesthesia (Dripps and 

Dumke, 1943; Brown and Hilton, 1956). 

The ventilatory responses to hypoxic and hyperoxic stimuli were 

readily apparent with the dose of ochloralose/urethane (38 and 300 

mg/kg respectively) used in this study suggesting that this 

combination does not depress chemoreflexes. Likewise, airway 

occlusions induced reflex adjustments in respiratory cycle 

characteristics which varied by less than 10% during a 9 hour period 

of room air breathing. This is in sharp contrast to Hering-Breuer 

reflexes studied under pentobarbital anesthesia which show time-

related changes in reflex strength (Bouverot and Fitzgerald, 

1969). Furthermore, mechanical and chemical reflexes were still 

apparent under very deep anesthesia with a-chloral ose/urethane, 

suggesting minimal central respiratory depression. 
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SUMMARY 

1. Intrapulmonary O2 chemoreceptor mechanisms effectively 

participate in the neurochemical control of respiratory rate and 

depth. 

a. Changes in alveolar oxygen tension (independent of arterial 

oxygenation) alter the spontaneous breathing pattern as well 

as the reflex respiratory responses to airway occlusion of 

anesthetized dogs. 

b. These mechanisms may also be involved in hypoxic and 

hyperoxic ventilatory responses of vagally intact dogs. 

c. Directional changes in Tc and Tj during unilateral occlusion 

maneuvers of the nitrogen and oxygen ventilated lungs during 

OV are identical to those observed during bilateral hypoxia 

and hyperoxia, respectively. 

2. Expiratory duration is NOT solely dependent upon mechanisms 

(namely phasic pulmonary stretch receptor discharge) which 

dictate inspiratory duration. 

a. Changes in respiratory frequency are brought about primarily 

by altering the expiratory duration with minimal changes in 

inspiratory time. 

3. Vagally mediated tonic PSR, as well as extravagal afferents 

arising from the diaphragm, chest wall and chemoreceptors have a 

greater effect on Tp than Tj. 
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a. Tonic PSR activity during inspiration acts to prematurely 

shorten both inspiratory and expiratory time. 

b. Chest wall afferent bulbopontine input appears to raise the 

I-OS threshold such that Tj is prolonged and inspired volume 

is increased. 

c. Peripheral chemoreceptor input (hypoxic stimulus) shortens 

Tj with or without affecting Tg, suggesting that arterial 

chemoreceptor afferents act directly on the inhibitory off-

switch threshold. 

4. The degree of matching between threshold lowering effects of 

hypoxemia and threshold elevating effects of chest wall 

distension determines the timing relationship between 

inspiration and expiration which will occur in a given 

experimental situation. 

5. Central interpretation of left and right lung vagal volume 

feedback is not simply additive. Alternatively, it could be 

that pulmonary vagal innervation (afferent and efferent) is not 

strictly ipsilateral. 
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Table Al. Mixed venous blood-gas and acid-base analysis during steady-
state hypoxic, hyperoxic, and differential ventilation with 
vagi intact 

Hypoxia Hyperoxia Diff. Vent. 
(n=12) (n=14) (n=18) 

N 7.26 ± 0.05a 7.25 ± 0.05 7.24 + 0.04 
pH (units) 

SS 7.30 ± 0.04 7.24 i 0.06 7.25 ± 0.07 

N 60.8 ± 6.8 62.9 ± 7.6 59.8 ± 5,4 
PCO2 (mmHg) PCO2 (mmHg) 

SS 56.2 ± 6.2 63.2 ± 10.9 57.1 + 9.6 

N 52.3 ± 5.7 51.2 ± 9.8 54.7 + 11.3 
PO2 (mmHg) PO2 (mmHg) 

SS 23.1 + 7.8*** 74.9 ± 17.5** 57.0 5.7 

N -1.4 t 2.7 -1.5 ± 3.4 -3.1 + 1.7 
BE (mEq/L) 

SS 1.4 ± 3.1 -2.7 ± 2.6 -3.4 + 2.2 

N 26.7 + 2.9 26.4 ± 3.2 24.8 + 1.3 
HCOo" (mEq/L) 

SS 23.7 ± 3.2 25.7 ± 2.7 24.0 + 1.8 

^Values represent mean ± SO. Significant difference between 
normoxic (N) values preceding exposure to the test gas and steady-state 
(SS) experimental data indicated as : **P < 0.01, ***P < 0.001. 
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Table A2 Summary of arterial and mixed venous pOo, PCO2 and pll changes during hypoxia, 
hyperoxia and differential ventilation in bilaterally vagotomized dogs 

Hypoxia (n=9) Hyperoxia (n=8) Diff. Vent. (n=ll) 
N SS N SS N SS 

pH (units) 
V 

a 
pCOg (mm Hg) 

V 

a 
pOg (mniHg) 

7.42 + 0.03® 

7.38 + 0.01 

42.3 + 5.2 

49.6 + 3.2 

76.1 + 3.1 

56.6 + 5.0 

7.47 + 0.03 

7.42 ± 0.04 

39.6 + 6.8 

47.3 + 6.4 

42.6 i 0.6*** 

28.2 + 2.3*** 

7.35 + 0.07 

7.32 + 0.06 

41.9 + 8.8 

47.3 ± 6.7 

80.5 ± 9.1 

53.3 + 4.5 

7.35 ± 0.09 

7.31 ± 0.07 

40.9 ± 11.9 

50.1 + 10.5 

7.28 + 0.04 

7.26 ± 0.06 

46.3 + 6.7 

52.4 ± 7.6 

7.28 + 0.06 

7.25 ± 0.05 

46.7 ± 10.5 

52,9 i 10.6 

84.5 + 33.6 

49.4 i 5.4 

326.6 + 94.2*** 74.2 ± 16.8 

68.4 ± 10.8** 44.4 ± 10.2 

^Values represent Mean + SD for arterial (a) and mixed venous (v) blood samples obtained 
during normoxia (N) preceding exposure to the test gas and during steady state (SS) breathing 
of the test gas. Significant difference between normoxia and the experimental test gas values 
represented as: **P < 0.01, ***P < 0.001. 
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Table A-3. Effect of loft, right and bllatororal vagottxny on respiratory cycle characteristics during spontaneous steady 
state room air vontiiatlon 

LEFT VAGOTOMY (n=l2) RIGHT VAGOTOMY (n=8) BILATERAL VAGOTOMY (n=l2) 
Variable E3oforo After Goforo After Eloforo After 

1344 i  22^ 1447 + 78 353 + 61 1201 i  28 1130 t 41 2023 i  62* 
5071 ± 165 4364 ± 51 4911 ± 269 2937 1 128* 3730 ± 78 4267 i  112 
6415 ± 176 5811 t 526 6264 +413 4130 t 292* 4860 i  588 6291 t 622 
25.1 + 1.5 29.2 t 2.2 25,4 i  0,4 34.8 1 1.5** 28,1 i  1.1 39.6 i  1.6** 
74.9 t 0.5 70.8 i  2.2 74,6 ± 1,7 65.2 ± 1.5** 71.9 t 1.2 60.4 ± 0.8** 
3.03 ± 0.12 3.14 1 0.34 3.01 ± 0,26 2.40 1 0.22» 3.23 ± 0.12 1.90 1 0.09» 

152 t 3 173 ± 12» 190 ± 6 191 + 8 174 t 9 289 ± 7* 
205 ± 3 203 i 8 207 i  12 240 i  8* 218 t 4 355 ± 12* 
357 t 4 376 ± 14 397 ± 9 431 1 9 392 ± 9 644 ± 14* 

41.8 ± 0.6 45.1 ± 0.4 47.1 ± 0.2 43.6 ± 0.8 43.7 i  0.4 45.1 1 0.3 
58.2 ± 0.7 54.9 i  0.9 52.9 ± 0.9 56.2 i  1.0 56.3 ± 1.1 54.9 ± 0.8 

114 ± 3 122 i  7 146.8 t 4 158.7 i  5 162 ± 6 154 ± 7 
167 ± 4 148 ± 7 163,5 i  4 202.0 1 5 211 t 7 187 t 5 

4.31 ± 0.13 4.65 ± 0.37 4,53 ± 0,12 7.42 ± 0.37* 6,21 ± 0,22 7.86 1 0,36 
0.87 i  0.03 1,02 ± 0.07 1,28 i  0,04 1.42 ± 0.03 1.38 t 0.06 1,64 ± 0,02 
0.98 ± 0.04 1.09 ± 0,10 1,79 i  0.02 2.15 ± 0.04 2.01 ± 0.04 2,31 ± 0,05 
1.43 t 0.02 1,80 ± 0,04** 1,42 ± 0.04 1.51 1 0.03* 1.45 ± 0.01 1,77 ± 0,02** 

1.26 t 0.03 1,54 ± 0,03 1.91 ± 0,05 1.97 1 0.06 1.80 1 0,04 2,31 ± 0,03** 
0.68 > 0.04 0,75 + 0,09 1,06 i  0.07 1.25 + 0.04 1,34 + 0,03 0,93 + 0,03 
0.80 t 0.06 0,85 ± 0,06 1.51 ± 0.07 1.94 t 0.08 2,03 t 0.06 1.29 i  0,04 
8.26 i  0.20 - - - - - - 8.36 i  0.24 9.41 i  0.32 9,46 i  0.34 9.58 i  0,28 
11.6 + 0.2 12,6 + 0,7 14.9 ± 0.4 15.8 ± 0.3 15.3 ± 0.1 15.9 ± 0.6 
13.9 t 0.3 13,8 i  0.8 13.9 t 0.2 16.0 1 0,2* 17.2 t 0.6 17.3 i  0.3 
16.5 ± 0.1 18,6 ± 0,9 16.7 ± 0.2 17.6 ± 0.3* 15.5 ± 0.2 15.5 ± 0.4 
17.5 i  0.20 10,6 i  0.4 15.5 i  0.3 16.7 i  0.4* 17.3 i  0.5 20.1 t 0.2 

5.8 1 0.1 6.0 1 0.3 7.2 ± 0.2 8.1 1 0.3 7.9 ± 0.2 5.7 i  0.3* 
5.0 i 0.2 5.5 t 0.4 8.9 i  0.2 9,6 t 0.4 9.3 i  0.4 6.6 i  0.3* 

T| (msec) 
Tg (msec) 
T^qj (msec) 

^/^TOT 
V^TOT (%) 

^ElI 
v.. (ml) 
v|« (ml) 

Vy (ml) 
Vr^/V, (%) 
VyVVy (X) 
Vj /T| (ml/soc) 
V.j.'^/T, (ml/sec) 
Vg (L/mIn) 

I-PawI" (cm HgO) 
l-P^J (cm HgO) 
E-Pj- (cm llgo) 
E-P^„ (cm HgO) 

I-PaWIV^I ('='^'2°) 
i-P^w /T, (cm HgO) 
Pgg (cm HgO/sec) 
l-fL (L/min) 
I-f" (L/min) 
E-F^ (L/min) 
E-f"^ (L/mln) 
E^ (cm HgOl/L) 
E" (cm HgO/L) 

"Refor to AGBREVIATIONS. 
^Values represent Moan + SEM, Moasuroments obtained from every breath over a 3 mln period 
25-40 min after vagotomy. Significant difference botwoon vagotomlzod state and intact statu represented by ''P<0.05, 
**P<0.01. 
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Table A-4. Effects of hypoxic, hyporoxic, and differential 
In vagally Intact dogs 

lung ventilation on steady state respiratory cycle characteristics 

HYPOXIA (n=l2) HYPEROXIA (n=M) 0IFF.VENT (n»l8) 
Variable E3oforo OurInq Before Pur Inn Oofore tXjr Inn 

T| (msec) 1254 t 21̂  839 i 21*** 1088 i 32 1099 i 48 1197 i 26 1128 i 53 
Tg (msec) 4454 + 462 1355 i 161** 3400 i 216 4261 ± 228* 3343 ± 316 2714 + 514* 
TTOT (msec) 
T,/T,OT (^) 
VW (*) 
TG/TI 
% (N.1) 
V^*^ (ml) 

5708 ± 164 2193 ± 87*** 4496 + 101 5360 + 64 4539 t 62 3842 t 73* TTOT (msec) 
T,/T,OT (^) 
VW (*) 
TG/TI 
% (N.1) 
V^*^ (ml) 

25.6 ± 0.2 38.3 ± 1.0*** 27.7 ± 0.6 25.0 ± 0.8 29.3 ± 0.8 33.1 ± 1.0* 
TTOT (msec) 
T,/T,OT (^) 
VW (*) 
TG/TI 
% (N.1) 
V^*^ (ml) 

74.4 + 0.5 61.7 i 0.4*** 72.3 + 0.9 75.0 i 0.8 70.7 i 0.7 66.9 t 0.4* 

TTOT (msec) 
T,/T,OT (^) 
VW (*) 
TG/TI 
% (N.1) 
V^*^ (ml) 

3.61 + 0.42 1.65 ± 0.11** 3.13 ± 3.83 ± 0.28* 2.74 i 0.42 2.27 + 0.36** 

TTOT (msec) 
T,/T,OT (^) 
VW (*) 
TG/TI 
% (N.1) 
V^*^ (ml) 

187 ± 6 168 ± 4 180 ± 6 203 ± 9 170 ± 6 168 1 7 

TTOT (msec) 
T,/T,OT (^) 
VW (*) 
TG/TI 
% (N.1) 
V^*^ (ml) 218 ± 8 195 ± 7 205 ± 4 242 1 3* 201 t 6 211 1 5 
V^ (ml) 
V,L/V^ (%) 
V 'Vv^ {%) 
VYVTI (ml/soc) 
V^'VTI (ml/sec) 

405 + 7 363 t 7 385 ± 6 446 i 7* 371 i 7 379 + 6 V^ (ml) 
V,L/V^ (%) 
V 'Vv^ {%) 
VYVTI (ml/soc) 
V^'VTI (ml/sec) 

46.0 ± 6 46.8 ± 5 46.6 t 4 45.5 ± 7 45.5 ± 3 44.0 t 8 

V^ (ml) 
V,L/V^ (%) 
V 'Vv^ {%) 
VYVTI (ml/soc) 
V^'VTI (ml/sec) 

54.0 i 7 53.2 + 9 53.4 i 3 54.5 ± 6 54.5 + 4 56.0 i 6 

V^ (ml) 
V,L/V^ (%) 
V 'Vv^ {%) 
VYVTI (ml/soc) 
V^'VTI (ml/sec) 

156 ± 6 200 ± 5** 169 ± 7 185 ± 3* 148 ± 8 159 ± 4 

V^ (ml) 
V,L/V^ (%) 
V 'Vv^ {%) 
VYVTI (ml/soc) 
V^'VTI (ml/sec) 184 ± 8 237 i 11* 196 i 7 221 ± 4* 179 ± 3 198 ± 9 
Vg (L/mln) 
l-PAW^ (cmHgO) 
l-PAW*^ (cmHgO) 

5.11 ± 0.61 10.08 ± 1.22*** 5.89 ± 0.54 5.79 ± 0.79 5.66 i 0.32 6.94 1 0.41* Vg (L/mln) 
l-PAW^ (cmHgO) 
l-PAW*^ (cmHgO) 

1.34 i 0.03 1.56 i 0.06** 1.23 t 0.04 1.29 ± 0. 03 1.23 t 0.04 1.29 t 0.02 
Vg (L/mln) 
l-PAW^ (cmHgO) 
l-PAW*^ (cmHgO) 1.92 ± 0.06 2.30 ± 0.04* 1.82 ± 0.05 2.07 t 0.07 1.82 ± 0.04 2.07 i 0.08 
E-PAW^ (cmHgO) 
C-PAw'' (cmHgO) 

1.45 i 0.03 1.43 ± 0.04 1.48 ± 0.02 1.67 ± 0.05* 1.37 i 0.02 1.47 ± 0.03 E-PAW^ (cmHgO) 
C-PAw'' (cmHgO) 1.92 i 0.42 1.89 ± 0.46 1.81 ± 0.31 1.89 ± 0.55 1.79 i 0.41 2.01 i 0.22* 
l-PAW^/T, (cmHjO/sec) 1.13 t 0.4 1.84 ± 1.0*** 1.41 t 0.9 1.47 ± 1.2 1.01 i 0.3 1.23 i 0.4* 
I-PAw'^/Tj (cmtlgO/sec) 1.65 ± 0.5 2.77 i 1.1* 1.20 i 0.3 2.16 i 0.9 1.51 ± 0.4 2.00 1 0.2* 
PgS (cmU20) 
l-F (L/mln) 
l-fR (L/mln) 

8.79 i 0.21 10.40 ± 0.32 8.52 t 0.16 9.28 1 0.28* 7.43 i 0. 18 9.13 i 0.26* PgS (cmU20) 
l-F (L/mln) 
l-fR (L/mln) 

15.2 ± 0.1 18.8 + 0.3** 15.0 ± 0.2 15.7 ± 0.1* 13.5 ± 0.3 14.1 ± 0.4 
PgS (cmU20) 
l-F (L/mln) 
l-fR (L/mln) 14.7 + 0.1 17.8 + 0.2** 16.3 + 0.4 17.6 i 0.3* 14.9 i 0.4 17.1 + 0.7* 
E-F^ (L/mln) 
E-F*^ (L/mln) 

16.8 ± 0.3 16.3 i 0.2 16.2 ± 0.3 17.1 i 0.1* 15.5 ± 0.4 15.5 i 0.2 E-F^ (L/mln) 
E-F*^ (L/mln) 16.0 i 0.4 15.0 ± 0.5 16.6 ± 0.3 17.4 i 0.4 15.9 i 0.3 15.9 t 0.6 

(cmllgO/L) 
E" (cmH20)/L) 

7.4 i 0.2 9.2 + 0.3* 8.2 + 0.2 7.7 + 0.5 6.9 + 0.3 7.2 ± 0.3 (cmllgO/L) 
E" (cmH20)/L) 9.1 i 0.2 11.0 i 0.4* 9.7 + 0.3 9.1 ± 0.4 8.4 i 0.2 8.6 + 0.3 

a Refer to ABBREVIATIONS. 
^Values represent Moan + SEM. Significant difference between the Before and During test gas breathing periods represented 

by *P<0.05, *"P<O.OI, and ''*"P<O.OOI. 
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Table AS- Effects of hypoxic, hyperoxic and differential lung 
ventilation on steady-state respiratory cycle 
characteristics in bilaterally vagotomizsd dogs 

(n=9) (n=8) (n»ll) 
Variable* Hypoxia Hyperoxia Diff. Vent. 

Tj (msec) 1542 21b 1956 ± 18 1730 i 32 

Tg (msec) 1510 + 48* 3924 ; 122 3932 r 33 

^TOT 3151 120 5880 ± 221 5662 ± 186 

TJ/TTOT (Ï) 4S.2 + 0.9 34.2 i 0.4 33.8 t 0.3 

V^TOT 50.8 t 1.1 65.3 ± 1.2 66.2 t 0.9 

T^/Ti 1.04 + 0.2* 2.02 + 0.6 2.12 ; 0.5 

Vy^ (ml) 338 t 8 385 t 6* 41 i 3* 
v/ (ml) 406 t 9 461 ; 3* 535 ± ic* 
y- (ml) 744 + 12 846 X g* 953 ± 12* 

VyVV; (5) 45.8 t 7 45.9 t 4 4 ± 4 
(:) 54.2 *• 8 54.1 t 6 56 + 4 

V-j-'-/Tj (ml/sec) 218 7* 214 ± 11 252 ; 5** 

Vy^/T^ (ml/sec) 263 + V 253 i 3 319 + 9** 

Vc (L/min) 14.04 4- 1.3* 10.01 ± 1.2* 11.9 t 1.2** 

(on HgO) 1.59 + 0.03 1.78 t 0.04 2.25 t 0.06 

(cm KjO) 2.48 + 0.07 2.43 i 0.06 2.41 t 0.08 

E-P-y^ (cm HgO) 1.92 ± 0.03 1.94 ± 0.02 . 2.15 ± 0.04 

(an HjO) 2.71 0.05 2.33 ; 0.04 2.2 i 0.06 

HjO/sec) 1.C3 ± 0.4 1.1 ± 0.9 1.45 ± 0.4* 

I-P^^y^/Tr (cm HgO/sec) 1.52 ± 0.5 1.43 i 0.6 1.53 ± 0.2 

Pgg (on H2O) 12.6 t 0.7 9.01 ± 0.3 10.89 ± 0.4 
I-pL (L/min) 22.7 t 0.5 18.5 i 0.7 19.5 ; 0.6 

I-F* (L/min) 19.9 4- 0.3 21.9 ± 0.5 26.5 ± 0.4 
E-pL (L/rain) 20.3 + 0.4 20.5 i 0.4 18.8 ± 0.3 

(L/rain) 22 + 0.5 23.1 ± 0.2 27.5 ± 0.1 

e"- (cm HjO/L) 4.8 i 0.3 4.5 i 0.4 5.5 ± 0.5 

e'' (cm HgO/L) 6.1 0.31 5.5 ± 0.5 4.5 ± 0.3* 

^Refer to abbreviations. 

^Values represent Means ± S EM with significant differences between 
normoxic BVX vs test gas BVX by paired comoarisons designated as: *P < 
0.05, **? < 0.01. 
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Table AG. Change In Inspiratory duration of first effort breaths 

Typo of Occlusion 

Condition* 
RLO-EE RlO-EI LIO-EE LIO-EI 010 EE OLO-EI 

I-Rootn Air 196 t 22**'b 222 i 23*** 200 t 25*** 221 i 24*** 811 t 73*** 650 1 46*** 
I-Hypoxia 220 t 60* 194 1 94* 102 1 33* 133 t 31** 619 t 02*** 513 i 03*** 
l-llyperoxia 151 t 32*** 202 t 31** 175 t 25*** 262 t 24*** 537 t 64*** 576 1 53*** 
l-Olff. Vent. 133 t 29*** 262 1 72** 162 i 40** 340 1 63*** 723 i 101*** 784 i 11*** 

LVX-Room Air 209 1 04* 492 i 304 94 1 44* 45 t 43 336 i 103*** 448 1 52*** 
RVX-Rociii Air -100 i 27* -10 1 35 373 1 90* 508 1 73** 630 i 110»** 603 1 219* 
BVX-Room Air 25 f 45 -95 t 65 45 ± 55 -155 t 25 205 i 105 243 t 160 

BVX-llypoxia 5 1 50 10 1 20 55 i 15 10 } 50 195 i 15* 20 1 40 
BVX-HyperoxIa -65 t 185 22 1 01 83 t 57 -30 i 120 253 t 182 106 1 137 
BVX-Dlff. Vent. 95 1 45 -110 i 280 5 i 5 -20 1 50 155 1 45 250 1 62* 

ro 
o 
o 

'Refer to ADURCVIATIONS . 

^Values given In units of time (msec, Mean t SD) with significant differences between first 
effort ami preceding control breaths designated as: *P < 0.05, **P < 0.01, and ***P < 0.001. 
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Table A7. Change in expiratory duration of first effort breaths 

Type of Occlusion 
Experimental 
Condition® 

RIO EE RIG-EI LIO-EE llO-EI 010 EE ÛLO-EI 

1-Rooin Air -366 i 375b 1350 i 355*** 297 i 387 413 i 250 196 i 310 529 i 268* 
I-Hypoxia 5 1 37 519 1 131** 104 i 42* 541 i 166** -144 i ISO 960 1 176*** 
I-Hyporoxia 972 t 564 2332 t 905* 124 1 222 1250 i 306** 1022 i 820* 4259 1 464*** 
I-Dlff. Vent. 233 t 130 461 1 451 203 1 86* 1667 i 471** 614 i 160* 2473 1 405*** 

LVX-Roan Air 2192 1 1126 1531 t 664* -820 i 404* -714 i 511 190 1 432 148 t 269 
RVX-Room Air 123 i 79 -200 1 192 4/3 i 187 5463 i 3078 723 1 449 3140 i 1054* 
OVX-Room Air -5 1 365 -12G i 105 275 1 155 65 Ï 105 -410 i 70 -430 i 122* 

DVX-Hypoxia -590 i 570 -1 i 170 -130 1 60 -60 1 60 -60 i 20 -145 i 115 
BVX-llyperoxla 490 t 450 -110 t 151 -133 1 160 843 1 655 410 t 554 762 i 618 
OVX-Dlff. Vent. 30 i 360 -100 i 120 -1 i 240 -85 1 155 -1245 125* -393 1 603 

*Rcfer to ABBREVIATIONS. 

^Values expressed In units of time (msec; mean 1 SO) with significant differences between first 
effort and prcccdiny control breaths designated by: *P < 0.05, **P < 0.01, and 
***P < 0.001. 
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Tabic A8.Change In total cycle duration of first effort breaths 

Typo of Occlusion 
exper imenta l  
Condition 

RLO-EE RLO-EI llO-EE ILO-EI BLO-EE BIO El 

I-Room Air -170 i 366^ 1572 1 354*** 497 t 392 634 1 249* 1006 1 311** 1180 t 265*** 
I-Hypoxia 233 61" 717 i 172'* 200 i 43** 674 t 196** 474 i 152* 1491 t 219*** 
I-llyperoxla 1123 i 575* 2533 i 990* 290 t 213 1512 t 299*** 2359 t 844* 4836 i 476*** 
!-Dlff. Vent. 367 1 130* 722 t 425 366 i 79*** 2014 i 471*** 1336 i 242*** 3256 i 400*** 

LVX-Room Air 2401 t 1073* 2024 t 652** -726 t 416 -669 i 497 526 t 381 597 t 270* 
RVX-Room Air 23 1 89 -210 i 179 047 1 276* 5970 1 3113 1353 1 546* 3/43 i 1117* 
BVX-Roan Air 20 1 320 -220 i 170 320 i 100 -90 t 130 -205 i 175 -187 i 243 

BVX-llypoxla -585 t 575 10 t 190 -75 i 75 -50 i 110 135 i 35 125 i 155 
BVX-llypcroxla 425 1 265 -97 1 99 -GO 1 199 013 i 563 663 i 604 868 i 512 
BVX-Dlff. Vent. 125 i 315 -290 t 280 5 1 235 -105 1 105 -1090 i 170* -143 i 540 

liefer to ABBREVIATIONS. 

^Values given In units of time (msec. Mean t SO) with significant differences between first 
effort and control breaths designated as: *P < 0.05, **P < 0.01 and ***P < 0.001. 
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APPENDIX B: REPRESENTATIVE RECORDINGS OF CARDIOPULMONARY 

PARAMETERS DURING SPECIFIC EXPERIMENTAL 

PROCEDURES 
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Figure Bl. Characteristic changes in the inspiratory and expiratory 
airflow patterns produced by bilateral vagotomy. 

Traces represent airflow, tidal volume and airway pressure 
(P^y) of the left and right lung, esophageal pressure 
(Pps) and a time scale. Note the changes in time scale 
beTore, during and after vagotomy (arrow). Vagal 
transection produces an apneic period followed by a 
bilateral increase in tidal volume and significant 
prolongation of total cycle duration. Fluctuations in 
inspiratory airflow are indicative of disrupted phrenic 
output. The increased slope of the expiratory flow trace 
results from removal of vagally mediated autogenic, i.e., 
laryngeal and pharyngeal, bronchomotor tone. 



www.manaraa.com

206 

AIRf=lflW 
CL/min) 

I S -

BILATERAL VAGOTOMY 

I I '\ 
f ' i 

 ̂ 200-1 

F " 

T 200 

•2T 

PAW 
(cm HgOO 

[ 
0-

-2-

•2 

CcmHjO) 

20 

" AIRFUDW 0-
H H/mieù 
T 20 J V_/ 

300i 

VOLUME Q, 
(mO 

300 

N. 

\J 

V' 

LL / 
'\j 

rr  ̂

'Il i p y  

TH 



www.manaraa.com

Figure B2 . Brief apneic response to right and bilateral vagotomy in 
anesthetized dog during room air breathing. 

Traces represent airflow, tidal volume and airway pressure 
(P^w) of the left and right lungs, esophageal pressure 
(Pec), pulmonary arterial blood pressure (PAP) and a time 
scale. Both procedures initially resulted in an immediate 
brief apneic period. However, right vagotomy produces 
small increases in tidal volume and respiratory rate while 
bilateral vagotomy produces a marked increase in volume 
and decrease in respiratory rate. The pulmonary pressor 
response to bilateral vagotomy was more apparent than that 
produced by cutting the right vagus, although neither was 
significant. 
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Figure 03. Transient elimination of arrhytlnnic breathing patterns by severing one or both vagi. 

Traces represent airflow, tidal volume and airway pressure of the left and 
right lungs, esophageal pressure (Prg), pulmonary arterial blood pressure (PAP) and a 
time scale. Approximately 48 min elapsed between right vagotomy (RVX) and left or 
bilateral vagotomy (BVX) in this dog. Tidal volume is relatively unaffected by right 
vagotomy. Subsequent severing of the left vagus, i.e., BVX condition, produced a 
transient increase in tidal volume which rather quickly returned toward normal. Note 
that the changes in airflow are out of proportion to the changes in airway pressure 
indicating a decline in airway resistance following vagotomy. The resistance change 
occurs on the left as well as the right side following RVX which suggests cross-over 
innervation of the lungs. 
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Figure B4. Volume changes in the absence of a frequency response to 
bilateral vagotomy. 

Records show airflow, tidal volume and airway pressure 
of the left and right lungs, esophageal pressure 

(P^g) and a time scale. Simultaneously severing both 
vagus nerves (arrow) produced a brief apneic period 
followed by a rhythmic respiratory pattern as usual. 
However, unlike in most dogs, the pattern was 
characterized by an unchanged breathing frequency with a 
concomitant increase in tidal volume. 
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